Conference paper Restricted Access

Incremental Policy Refinement by Recursive Regression and Kinesthetic Guidance

Bojan Nemec; Mihael Simonč; Tadej Petrič; Aleš Ude


JSON Export

{
  "owners": [
    89752
  ], 
  "doi": "10.5281/zenodo.3632342", 
  "stats": {
    "version_unique_downloads": 1.0, 
    "unique_views": 22.0, 
    "views": 23.0, 
    "version_views": 23.0, 
    "unique_downloads": 1.0, 
    "version_unique_views": 22.0, 
    "volume": 610941.0, 
    "version_downloads": 1.0, 
    "downloads": 1.0, 
    "version_volume": 610941.0
  }, 
  "links": {
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.3632341.svg", 
    "doi": "https://doi.org/10.5281/zenodo.3632342", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.3632341", 
    "latest_html": "https://zenodo.org/record/3632342", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.3632342.svg", 
    "html": "https://zenodo.org/record/3632342", 
    "latest": "https://zenodo.org/api/records/3632342"
  }, 
  "conceptdoi": "10.5281/zenodo.3632341", 
  "created": "2020-01-31T08:45:46.451299+00:00", 
  "updated": "2020-01-31T08:51:46.964006+00:00", 
  "conceptrecid": "3632341", 
  "revision": 2, 
  "id": 3632342, 
  "metadata": {
    "access_right_category": "danger", 
    "doi": "10.5281/zenodo.3632342", 
    "description": "<p>Fast deployment of robot tasks requires appropriate<br>\ntools that enable efficient reuse of existing robot control<br>\npolicies. Learning from Demonstration (LfD) is a popular tool<br>\nfor the intuitive generation of robot policies, but the issue of<br>\nhow to address the adaptation of existing policies has not been<br>\nproperly addressed yet. In this work, we propose an incremental<br>\nLfD framework that efficiently solves the above-mentioned<br>\nissue. It has been implemented and tested on a number of<br>\npopular collaborative robots, including Franka Emika Panda,<br>\nUniversal Robot UR10, and KUKA LWR 4.</p>", 
    "title": "Incremental Policy Refinement by Recursive Regression and Kinesthetic Guidance", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "3632341"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "3632342"
          }
        }
      ]
    }, 
    "access_conditions": "<p>green access</p>", 
    "grants": [
      {
        "code": "820767", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::820767"
        }, 
        "title": "Co-production CeLL performing Human-Robot Collaborative AssEmbly", 
        "acronym": "CoLLaboratE", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }
    ], 
    "communities": [
      {
        "id": "collaborate_project"
      }
    ], 
    "publication_date": "2020-01-31", 
    "creators": [
      {
        "affiliation": "Jo\u017eef Stefan Institute, Ljubljana, Slovenia", 
        "name": "Bojan Nemec"
      }, 
      {
        "affiliation": "Jo\u017eef Stefan Institute, Ljubljana, Slovenia", 
        "name": "Mihael Simon\u010d"
      }, 
      {
        "affiliation": "Jo\u017eef Stefan Institute, Ljubljana, Slovenia", 
        "name": "Tadej Petri\u010d"
      }, 
      {
        "affiliation": "Jo\u017eef Stefan Institute, Ljubljana, Slovenia", 
        "name": "Ale\u0161 Ude"
      }
    ], 
    "access_right": "restricted", 
    "resource_type": {
      "subtype": "conferencepaper", 
      "type": "publication", 
      "title": "Conference paper"
    }, 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.3632341", 
        "relation": "isVersionOf"
      }
    ]
  }
}
23
1
views
downloads
All versions This version
Views 2323
Downloads 11
Data volume 610.9 kB610.9 kB
Unique views 2222
Unique downloads 11

Share

Cite as