Conference paper Restricted Access
Bojan Nemec; Mihael Simonč; Tadej Petrič; Aleš Ude
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.5281/zenodo.3632342</identifier> <creators> <creator> <creatorName>Bojan Nemec</creatorName> <affiliation>Jožef Stefan Institute, Ljubljana, Slovenia</affiliation> </creator> <creator> <creatorName>Mihael Simonč</creatorName> <affiliation>Jožef Stefan Institute, Ljubljana, Slovenia</affiliation> </creator> <creator> <creatorName>Tadej Petrič</creatorName> <affiliation>Jožef Stefan Institute, Ljubljana, Slovenia</affiliation> </creator> <creator> <creatorName>Aleš Ude</creatorName> <affiliation>Jožef Stefan Institute, Ljubljana, Slovenia</affiliation> </creator> </creators> <titles> <title>Incremental Policy Refinement by Recursive Regression and Kinesthetic Guidance</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2020</publicationYear> <dates> <date dateType="Issued">2020-01-31</date> </dates> <resourceType resourceTypeGeneral="Text">Conference paper</resourceType> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3632342</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.3632341</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/collaborate_project</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="info:eu-repo/semantics/restrictedAccess">Restricted Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>Fast deployment of robot tasks requires appropriate<br> tools that enable efficient reuse of existing robot control<br> policies. Learning from Demonstration (LfD) is a popular tool<br> for the intuitive generation of robot policies, but the issue of<br> how to address the adaptation of existing policies has not been<br> properly addressed yet. In this work, we propose an incremental<br> LfD framework that efficiently solves the above-mentioned<br> issue. It has been implemented and tested on a number of<br> popular collaborative robots, including Franka Emika Panda,<br> Universal Robot UR10, and KUKA LWR 4.</p></description> </descriptions> <fundingReferences> <fundingReference> <funderName>European Commission</funderName> <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier> <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/820767/">820767</awardNumber> <awardTitle>Co-production CeLL performing Human-Robot Collaborative AssEmbly</awardTitle> </fundingReference> </fundingReferences> </resource>
All versions | This version | |
---|---|---|
Views | 23 | 23 |
Downloads | 1 | 1 |
Data volume | 610.9 kB | 610.9 kB |
Unique views | 22 | 22 |
Unique downloads | 1 | 1 |