Project deliverable Open Access

Model-observation and reanalyses comparison at key locations for heat transport to the Arctic (D2.1)

Moat, Ben; Herbaut, Christophe; Larsen, Karin Margretha; Hansen, Bogi; Sinha, Bablu; Sanchez-Franks, Alejandra; Houpert, Loic; Liu, Yang; Hazeleger, Wilco; Attema, Jisk; Yeager, Stephen; Small, Justin; Valdimarsson, Hedinn; Berx, Barbara; Cunningham, Stuart; Houpert, Loic; Hallam, Samantha; Woodgate, Rebecca; Lee, Craig; Kwon, Young Oh; Flemming, Laura; Mercier, Herle; Jochumsen, Kerstin; Mecking, Jennifer; Holliday, Penny Holliday; Josey, Simon


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <controlfield tag="005">20201001084117.0</controlfield>
  <datafield tag="500" ind1=" " ind2=" ">
    <subfield code="a">The Blue-Action project has received funding from the European Union's Horizon 2020
Research and Innovation Programme under Grant Agreement No 727852.</subfield>
  </datafield>
  <controlfield tag="001">3631100</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Centre National de la Recherche Scientifique</subfield>
    <subfield code="a">Herbaut, Christophe</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Faroe Marine Research Institute</subfield>
    <subfield code="a">Larsen, Karin Margretha</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Faroe Marine Research Institute</subfield>
    <subfield code="a">Hansen, Bogi</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">National Oceanography Centre</subfield>
    <subfield code="a">Sinha, Bablu</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">National Oceanography Centre</subfield>
    <subfield code="a">Sanchez-Franks, Alejandra</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">National Oceanography Centre</subfield>
    <subfield code="a">Houpert, Loic</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Netherlands eScience Center</subfield>
    <subfield code="a">Liu, Yang</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Netherlands eScience Center</subfield>
    <subfield code="a">Hazeleger, Wilco</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Netherlands eScience Center</subfield>
    <subfield code="a">Attema, Jisk</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">National Center for Atmospheric Research</subfield>
    <subfield code="a">Yeager, Stephen</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">National Center for Atmospheric Research</subfield>
    <subfield code="a">Small, Justin</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Marine and Freshwater Research Institute</subfield>
    <subfield code="a">Valdimarsson, Hedinn</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Marine Scotland Science</subfield>
    <subfield code="a">Berx, Barbara</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Scottish Association for Marine Science</subfield>
    <subfield code="a">Cunningham, Stuart</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Southampton</subfield>
    <subfield code="a">Houpert, Loic</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Southampton</subfield>
    <subfield code="a">Hallam, Samantha</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Washington</subfield>
    <subfield code="a">Woodgate, Rebecca</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Washington</subfield>
    <subfield code="a">Lee, Craig</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Woods Hole Oceanographic Institution</subfield>
    <subfield code="a">Kwon, Young Oh</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Woods Hole Oceanographic Institution</subfield>
    <subfield code="a">Flemming, Laura</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Institut français de recherche pour l'exploitation de la mer</subfield>
    <subfield code="a">Mercier, Herle</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Bundesamts für Seeschifffahrt und Hydrographie</subfield>
    <subfield code="a">Jochumsen, Kerstin</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">National Oceanography Centre</subfield>
    <subfield code="a">Mecking, Jennifer</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">National Oceanography Centre</subfield>
    <subfield code="a">Holliday, Penny Holliday</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">National Oceanography Centre</subfield>
    <subfield code="a">Josey, Simon</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">3790918</subfield>
    <subfield code="z">md5:ee7d1fa8712834a8312615e7c492fb7e</subfield>
    <subfield code="u">https://zenodo.org/record/3631100/files/D2.1-LAST.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-01-30</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-blue-actionh2020</subfield>
    <subfield code="o">oai:zenodo.org:3631100</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">National Oceanography Centre</subfield>
    <subfield code="a">Moat, Ben</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Model-observation and reanalyses comparison at key locations for heat transport to the Arctic (D2.1)</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-blue-actionh2020</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">727852</subfield>
    <subfield code="a">Arctic Impact on Weather and Climate</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Assessment of key lower latitude influences on the Arctic and their simulation&lt;/p&gt;

&lt;p&gt;&lt;strong&gt;Summary&lt;/strong&gt;&lt;/p&gt;

&lt;p&gt;Blue-Action Work Package 2 (WP2) focuses on lower latitude drivers of Arctic change, with a focus on&lt;br&gt;
the influence of the Atlantic Ocean and atmosphere on the Arctic. In particular, warm water travels from&lt;br&gt;
the Atlantic, across the Greenland-Scotland ridge, through the Norwegian Sea towards the Arctic. A&lt;br&gt;
large proportion of the heat transported northwards by the ocean is released to the atmosphere and&lt;br&gt;
carried eastward towards Europe by the prevailing westerly winds. This is an important contribution to&lt;br&gt;
northwestern Europe&amp;#39;s mild climate. The remaining heat travels north into the Arctic. Variations in the&lt;br&gt;
amount of heat transported into the Arctic will influence the long term climate of the Northern&lt;br&gt;
Hemisphere. Here we assess how well the state of the art coupled climate models estimate this&lt;br&gt;
northwards transport of heat in the ocean, and how the atmospheric heat transport varies with changes&lt;br&gt;
in the ocean heat transport. We seek to improve the ocean monitoring systems that are in place by&lt;br&gt;
introducing measurements from ocean gliders, Argo floats and satellites.&lt;br&gt;
These state of the art computer simulations are evaluated by comparison with key trans-Atlantic&lt;br&gt;
observations. In addition to the coupled models &amp;lsquo;ocean-only&amp;rsquo; evaluations are made. In general the&lt;br&gt;
coupled model simulations have too much heat going into the Arctic region and the transports have too&lt;br&gt;
much variability. The models generally reproduce the variability of the Atlantic Meridional Ocean&lt;br&gt;
Circulation (AMOC) well. All models in this study have a too strong southwards transport of freshwater&lt;br&gt;
at 26&amp;deg;N in the North Atlantic, but the divergence between 26&amp;deg;N and Bering Straits is generally&lt;br&gt;
reproduced really well in all the models.&lt;/p&gt;

&lt;p&gt;Altimetry from satellites have been used to reconstruct the ocean circulation 26&amp;deg;N in the Atlantic, over&lt;br&gt;
the Greenland Scotland Ridge and alongside ship based observations along the GO-SHIP OVIDE Section.&lt;br&gt;
Although it is still a challenge to estimate the ocean circulation at 26&amp;deg;N without using the RAPID 26&amp;deg;N&lt;br&gt;
array, satellites can be used to reconstruct the longer term ocean signal. The OSNAP project measures&lt;br&gt;
the oceanic transport of heat across a section which stretches from Canada to the UK, via Greenland.&lt;br&gt;
The project has used ocean gliders to great success to measure the transport on the eastern side of the&lt;br&gt;
array. Every 10 days up to 4000 Argo floats measure temperature and salinity in the top 2000m of the&lt;br&gt;
ocean, away from ocean boundaries, and report back the measurements via satellite. These data are&lt;br&gt;
employed at 26&amp;deg;N in the Atlantic to enable the calculation of the heat and freshwater transports.&lt;br&gt;
As explained above, both ocean and atmosphere carry vast amounts of heat poleward in the Atlantic. In&lt;br&gt;
the long term average the Atlantic ocean releases large amounts of heat to the atmosphere between&lt;br&gt;
the subtropical and subpolar regions, heat which is then carried by the atmosphere to western Europe&lt;br&gt;
and the Arctic. On shorter timescales, interannual to decadal, the amounts of heat carried by ocean and&lt;br&gt;
atmosphere vary considerably. An important question is whether the total amount of heat transported,&lt;br&gt;
atmosphere plus ocean, remains roughly constant, whether significant amounts of heat are gained or&lt;br&gt;
lost from space and how the relative amount transported by the atmosphere and ocean change with&lt;br&gt;
time. This is an important distinction because the same amount of anomalous heat transport will have&lt;/p&gt;

&lt;p&gt;very different effects depending on whether it is transported by ocean or the atmosphere. For example&lt;br&gt;
the effects on Arctic sea ice will depend very much on whether the surface of the ice experiences&lt;br&gt;
anomalous warming by the atmosphere versus the base of the ice experiencing anomalous warming&lt;br&gt;
from the ocean. In Blue-Action we investigated the relationship between atmospheric and oceanic heat&lt;br&gt;
transports at key locations corresponding to the positions of observational arrays (RAPID at 26&amp;deg;N,&lt;br&gt;
OSNAP at ~55N, and the Denmark Strait, Iceland-Scotland Ridge and Davis Strait at ~67N) in a number of&lt;br&gt;
cutting edge high resolution coupled ocean-atmosphere simulations. We split the analysis into two&lt;br&gt;
different timescales, interannual to decadal (1-10 years) and multidecadal (greater than 10 years). In the&lt;br&gt;
1-10 year case, the relationship between ocean and atmosphere transports is complex, but a robust&lt;br&gt;
result is that although there is little local correlation between oceanic and atmospheric heat transports,&lt;br&gt;
Correlations do occur at different latitudes. Thus increased oceanic heat transport at 26&amp;deg;N is&lt;br&gt;
accompanied by reduced heat transport at ~50N and a longitudinal shift in the location of atmospheric&lt;br&gt;
flow of heat into the Arctic. Conversely, on longer timescales, there appears to be a much stronger local&lt;br&gt;
compensation between oceanic and atmospheric heat transport i.e. Bjerknes compensation.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.3631099</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.3631100</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">deliverable</subfield>
  </datafield>
</record>
136
99
views
downloads
All versions This version
Views 136136
Downloads 9999
Data volume 375.3 MB375.3 MB
Unique views 110110
Unique downloads 8585

Share

Cite as