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Abstract One of the most challenging issues when facing a classification problem
is to deal with imbalanced datasets. In recent literature, ensemble classification
techniques have proven to be very successful in addressing this problem. In this
paper, we present an ensemble classification approach based on feature space parti-
tioning for imbalanced classification. In order to optimize the different parameters
related to the feature space partitioning, a hybrid metaheuristic called GACE is
applied. To assess the performance of the proposal, an extensive experimentation
over imbalanced and real-world datasets is accomplished by comparing different
configurations and base classifiers. The results show that its performance is com-
petitive with reference techniques in the literature.

1 Introduction

The classification task is one of the most important and basic tasks in the field
of machine learning. Many approaches to this task have been developed over the
years. Some of the classical methods that can be included in this topic are De-
cision Trees, Artificial Neural Networks, K-nearest Neighbor, or Support Vector
Machines among others. These techniques operate under the assumption that the
data contains a faithful balance between each of the classes represented in the
problem they are applied to [14]. However, in many real-world problems, this as-
sumption leads to poor performance when the number of instances of one class
is much lower than the rest of the classes. If this situation occurs, the data-set is
said to be imbalanced. In this kind of data, the class with the largest number of
instances is called the majority class, while a class with fewer instances is called
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a minority class. Imbalanced data is present in real-world problems, such as dis-
ease diagnosis [57], traffic congestion [45], astronomy [58] or image classification
[72, 74]. When machine learning methods are applied to imbalanced data, they
should focus on achieving a good classification of the minority class due to the
fact that the cost of misclassifying them is usually higher[22]. Using the traffic
congestion forecasting problem as an example, it is more important to achieve a
higher accuracy regarding instances of congestion (a minority class) than for in-
stances of a normal state of traffic (the majority class) due to the loss of time this
can involve for drivers in a real-world scenario.

Many approaches have been proposed in the literature to deal with learn-
ing from imbalanced data; among them are sampling methods, cost-sensitive al-
gorithms, one-class classifiers, and ensemble classification techniques. These ap-
proaches can be placed into three different categories:

– Data-level approaches, which are focused on restructuring the training datasets
in order to balance them. Oversampling and undersampling methods are the
most common examples of this category;

– Algorithmic level approaches, which introduce modifications in the classifica-
tion methods to improve their performance when classifying the minority class;
and

– Ensemble methods, which combine the estimation of a set of individual classi-
fiers trained over the same data. The most widely used approach of this class
is the so-called boosting algorithm, which works under the premise that a set
of weak classifiers works better than a strong one. Examples of boosting algo-
rithms are SMOTEBoost [9], RUSBoost [56], or AdaBoost [62].

In this work, we focus on ensemble methods because they have shown to be
one of the most successful approaches to deal with imbalance classification so far.
Ensemble classification can be defined as the combination of a group of classifiers
whose individual decisions are joined in some manner to provide a final output
[34]. The principal idea behind the use of ensemble classification is to learn from
data using multiple individual classifiers.

Generally, ensemble classification has proved to obtain better results than an
individual classifier on its own, when they are applied to the same problems [12],
and it has also been presented as a method to improve the performance of a single
classifier [5, 12, 33]. When an ensemble is created, there are some design decisions
to take into account, such as the algorithm or algorithms to use as individual clas-
sifier (also called base classifier), the sampling strategy, and the collective decision
making method for the final output, i.e. the method for combining the outputs
of the base classifiers. Other aspects to take into account could be the diversity
generation or the way each classifier will be trained (with the whole training set
or a part of it). This area of research has attracted significant interest in recent
years. The interested reader is referred to [53] for a tutorial on this topic, describ-
ing a taxonomy for characterizing ensemble methods, and the general process of
constructing classification ensembles.

Focusing on the selection method used to choose the most appropriate indi-
vidual classifiers given a classification problem, we can find two approaches: static
classifier selection, where the same ensemble is applied for all test samples; and
dynamic classifier selection, where a different ensemble may be applied for each
test sample [20]. Within dynamic classifier selection, an interesting concept is the
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local specialization of the base classifiers on specific partitions of the feature space
[39]. Some proposals in this direction assume the local specialization of the indi-
vidual classifiers while others divide the feature space into partitions and establish
a different classifier for each of them.

Regarding the choice of a collective decision-making method, two main groups
of methods can be defined for this task. The first one includes algorithms that join
the answers of their classifiers. Majority voting [55] and other kinds of popular
voting variants [39, 41, 65] are part of this group. Advanced techniques include
weighting the importance of the decisions coming from the base classifiers. Treating
the process of weight selection as a separate learning process is an alternative
method [23, 29, 40]. One of the advantages of these techniques is the effective
counteraction to avoid the overtraining of the base classifiers [29]. The second
group is formed by the procedures that use a posteriori probability estimator to
classifier fusions on the level of their discriminating function. These methods do
not require a learning procedure. However, they can be only used in clearly defined
conditions [16].

The present paper relates to dynamic classifier selection based on local spe-
cialization and weighted voting as collective decision-making method. Concretely,
we focus on the approach called AdaSS (Adaptive Splitting and Selection) that
simultaneously divides the feature space into partitions and establishes a different
classifier for each partition. This approach was proposed by [29] and recently used
in other works as [30, 31] with very promising results. This approach for building
ensembles entails the resolution of a complex optimization problem whose objec-
tive is the minimization of the error of the whole system.

In this work, we propose the use of ensemble methods based on AdaSS as a
powerful tool to deal with imbalance datasets because, as far as we know, it has
not been applied before in this context. The motivations behind this research are:

– To select the best area possible to create the partitions for each ensemble by
optimizing the centroid’s positions of the clusters that delimit the partitions
of the feature space.

– To optimize the weights of each base classifier within the discriminant function
of the collective decision-making method of each ensemble. This optimization
will be unsupervised. In this way, it won’t be necessary the knowledge of an
expert or an external validation set to determinate the initial value of the
weights. This also makes that the classifiers work in a no restrictive way, i.e.
the final weights will be based in the level of expertise that the classifier had
obtained along the execution in every class.

– To address the last two tasks (feature space centroids and individual weights
optimization for each partition and ensemble, respectively) into one integrated
process. This approach has proven to obtain very good results in other works as
[29, 30, 31]. The main novelty of our proposal w.r.t. the mentioned works, it is
the incorporation of a more powerful method to solve the underlying optimiza-
tion problem. This optimization problem becomes even more complex in the
context of imbalanced data because the prediction of the majority classes leads
to local minima with big basins of attractions, which is a characteristic that is
known to lead optimization methods to poorer performance. For this reason,
in our opinion, the use of more advanced optimization algorithms is a must
in order to ensure the best possible performance of the resulting ensemble. To
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this end, we have used a hybrid metaheuristic, called GACE, that combines a
Genetic Algorithm (GA) with a Cross Entropy (CE) method for the resolution
of the mentioned optimization problem. The main advantage of this technique
is the combination of the exploration ability of the GA and the exploitation
ability of the CE. This method was successfully applied to the optimization of
hierarchical fuzzy rule-based systems [45], and continuous functions [44].

– To be able to deal with imbalance data without the use of data-level methods
as SMOTE, which is one of the most successful ones currently. As mentioned
before, data-level approaches to deal with imbalance implies the modification
of the training set, which leads to an extra cost in terms of the time required
for the application of the technique. Our aim is to design methods that provide
similar or better results without this extra-cost by avoiding modifications of
the training set.

This paper is an extension of the work presented in [46]. The main novelties
addressed here are listed below:

– A wider and more realistic benchmark: the total number of datasets has in-
creased from 12 to 40 by incorporating new imbalanced datasets. Furthermore,
ten out of forty correspond to real-world datasets for traffic congestion predic-
tion.

– A new analysis of the algorithm’s behaviour: a study of the influence of the
subpopulation size in the performance of ensemble method has been included.

– An extension of the comparative study: the proposal has been compared with
new high-performance and well-known methods from the literature on imbal-
anced classification.

The rest of this paper is structured as follows. Section 2 presents different
articles related to ensemble methods and hybrid techniques with a special focus on
its application to imbalanced data. The ensemble methodology based on AdaSS
and GACE is exposited in Section 3. The experimental set-up is presented in
Section 4. Finally, Section 5 contains the conclusions and avenues for future work.

2 Background

In this section, different approaches in the literature related to our proposal are
presented. We focus this section on works in the state of the art from the three
different areas that form part of the problem and proposed solution exposited
in this paper: ensemble approaches applied not only to general themes but also
to imbalanced data in Section 2.1, metaheuristics applied to imbalanced data in
Section 2.2, and hybrid methods applied to both imbalanced and balanced domains
in Section 2.3.

2.1 Ensemble learning applied to imbalanced classification

Ensemble learning can be defined as the use of multiple learning algorithms to
obtain better predictive performance than could be obtained from any of these
algorithms alone [50, 53]. Over the last decade, much research related to this ap-
proach has been presented in the literature, focusing on the classification problem
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for imbalanced datasets. For example, in [52], a resampling ensemble algorithm
is developed focused on the imbalanced classification problem. In this case, the
minority classes are oversampled while the majority classes are undersampled. To
construct the ensemble, machine learning methods are selected.

Another example can be found in [63], which presents a bagging technique
where two learning algorithms are used to construct the ensemble to deal with an
online class imbalanced learning problem.

In [42], a resampling ensemble algorithm is developed focused on the classifi-
cation problems for imbalanced datasets. The optimization technique used in this
case is the BAT algorithm, where the accuracy rate of all the classes is optimized
at the same time. From the experimental results, the system can be used to re-
duce the time complexity as well as enhance the accuracy rate of the imbalanced
classification process.

Another ensemble-based method is presented in [18], where Synthetic Minor-
ity Over-sampling Technique (SMOTE) and Rotation Forest algorithm are used to
address the class imbalance problem. Twenty KEEL imbalanced datasets are used
in the experimentation, where the proposal is compared with different classifica-
tion ensemble methods, such as SMOTE-Boost, SMOTE-Bagging, and SMOTE-
random subspace.

There are many papers related to this theme, which means that it is an active
issue in the literature. For this reason, the state-of-the-art about ensemble imbal-
ance classification is wide. Interested readers are referred to [34], [49], and [62] for
different surveys of this issue.

2.2 Metaheuristics applied to imbalanced classification

Metaheuristic techniques have been used in many different fields over the last
decades. This category includes algorithms such as Particle Swarmn Optimization
(PSO) [35], Ant Colony Optimization (ACO) [15], Genetic Algorithm (GA) [26],
Bat Algorithm (BA) [68], Data Gravitation Classification (DGC) [73], and so
on [75]. Focusing on classification, and especially on imbalanced problems, these
methods have been widely used on their own as well as in combination with other
techniques in the literature. In [66], PSO is proposed for omics data classification.
The algorithm is designed to handle different characteristics of omics data, such
as high dimensionality, small sample size, and class imbalance.

For example, in this article [69] Authors proposed an undersampling method
based on ACO for an imbalanced problem in DNA microarray data. The proposal
is evaluated on four benchmark skewed DNA microarray datasets. The results
outperform many other sampling approaches.

In case of [6], authors developed a cost-sensitive feature selection method using
a type of GA called a chaos genetic algorithm. The evaluation function considers
both feature-acquiring costs and misclassification costs in the field of network
security, weakening the influence of the many instances from the majority classes
in large-scale datasets. The proposal is tested on a large-scale dataset of network
security, using two kinds of classifiers: C4.5 and K-nearest Neighbor.

Other works related with metaheuristics such as Support Vector Machine
(SVM) or Genetic Programming (GP) can be found in [10], where a SVM based
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framework is presented to optimize different metrics related to class imbalance sit-
uations, as well as in [48], where the authors analyzed the performance of evolving
diverse ensembles using genetic programming for software defect prediction with
imbalanced data.

2.3 Hybrid algorithms applied to imbalanced classification

In this subsection, different hybrid approaches in the literature are mentioned. Hy-
brid algorithms are a way of dealing with the weaknesses of the different methods,
and, at the same time, maximizing their strengths. These algorithms have been
used in many and varied domains, such as medicine [25], scheduling optimization
[43], transportation systems [45], astronomy [57], and so on.

In the imbalanced classification field, many works can be found that use hybrid
algorithms to deal with this problem. For example, in [67], a PSO is proposed for
dealing with the class imbalance problem in medical and biological data mining. A
PSO is combined with multiple classifiers and a performance metric for evaluation
fusion. The majority classes are ranked using multiple objectives according to their
merit and then combined with the minority class to create a balanced dataset.

Authors in [60] presented a Soft-Hybrid algorithm to improve classification per-
formance. The hybrid algorithm is formed by different modified machine learning
techniques whose results were combined at the end of an experimentation phase.
Measures such as the true positive rate, the F -measure, and the G-mean were used
as quality measures.

Another example can be found in [8], where a hybrid algorithm formed by a
GA and an undersampling method is created to improve the accuracy of support
vector machines on skewed datasets.

Lastly, in [3], the authors developed a hybrid Adaboost-SVM method using
Gaussian Mixture Modeling (GMM) to investigate the impact of using GMM with
the boosted SVM in a multi-class phoneme recognition problem with the aim of
advancing the classification of imbalanced data.

The main novelty of the present paper with respect to the methods reviewed
in this and the previous subsections is two-fold. On the one hand, the fact of using
feature space partitioning as the approach to build the ensemble for imbalanced
datasets, that has not been used in this context before. And on the other hand,
the application of GACE as optimization method of the ensemble approach, a
more powerful optimizer than those used in previous works on ensembles based on
feature space partitioning. As mentioned before, the main motivation behind this
is that the problem becomes harder when the datasets are imbalanced due to the
big basins of attraction created by the majority classes.

The concept of feature space partitioning has been applied to imbalance clas-
sification in [36] and [37]. In the first work, the feature space partitioning consists
on clustering strategies as c-means or fuzzy c-means, and the weights of the base
classifiers are based on a heuristic function that takes into account the Euclidean
distance between the object and the boundary of the respective class. In the second
work, the feature space partitioning is based on random subspaces and the weights
of the base classifiers are set in the same way as before. The main difference with
these two works is the use of AdaSS as feature space partitioning technique whose
main advantage is the simultaneous optimization of the partitions, the assignment
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of classifiers to partitions and the weights of the base classifiers for inferring the
output class.

3 Description of the ensemble approach

In this section, we describe the different elements that compose the proposed ap-
proach. First, we describe the AdaSS algorithm for the simultaneous partitioning
of the feature space and assignment of classifiers to partitions (Section 3.1) and
then, the details of the training algorithm based on the GACE hybrid metaheuris-
tic, in Section 3.2.

3.1 Description of Adaptive Splitting And Selection Algorithm

The Adaptive Splitting and Selection Algorithm exploits the local competencies
of given classifiers. Let us assume the feature space X is divided into a set of H
clusters,

X =
H⋃

h=1

X̂h, ∀k, l ∈ {1, ..., H}, k 6= l, X̂k ∩ X̂l = ∅ (1)

where X̂h denotes the h-th constituent (cluster). The clusters are defined by their
centroids Ch = {c1h, . . . , c

d
h}, where d is the feature space dimension. With this

information we define:

member(C, x) = arg minH
h=1dist(x,Ch) (2)

as the functions that returns the index of the cluster where C = {C1, . . . , Ch}
is the set of centroids and dist refers to the Euclidean distance.In case of draw, the
cluster with the lower index is selected. Then, the decision rule for the combined
classifier Ψ is given by the formula:

Ψ(x) = Ψ̄member(C,xn)(xn) (3)

where Ψ̄h is the classifier assigned to the h-th cluster (called an area classifier).
In this way, the compound classifier returns the output of the classifier assigned
to the cluster where the instance x belongs. It could be a single classifier or an
ensemble classifier, which is the case of our proposal. It is important to take into
account that the parameter H plays a fundamental role in the performance of the
ensemble. On the one hand, a larger number of clusters makes possible a wider
exploration of the local competencies of the area classifiers, but on the other hand,
it could lead to overfitting. In the present paper, the parameter H is kept fixed
along all the experimentation.

In the following lines, we present the classification rule for the area or local
classifiers Ψ̄h which in turn are also ensembles. Let us assume that we count with k
(base) classifiers Ψ1, Ψ2, . . ., Ψk to build these local (ensemble) classifiers (Note that
we use Ψ̄ with subindex to refer to the local classifier and Ψ with superindex to refer
to the base classifiers that we use to build the local classifiers). For a given instance
x ∈ X, each local classifier decides whether x belongs to class i ∈ M = {1, . . . ,m}
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based on a discriminant function. Let F (l)(i, x) denote a function that is assigned
to class i for a given value of x, and that is used by the l-th classifier. To calculate
the response of each of the classifier, a W matrix is defined, that represents the
weights use for the discriminant function F . This matrix has k rows and m values,
where k is the number of classifiers used in the ensemble and m is the number of
classes in the dataset. In this way, the weight matrix corresponding to the h-th
cluster Wh could be formulated as follows:

Wh = [[w1
h(1), . . . , w1

h(m)], . . . , [wk
h(1), . . . , wk

h(m)]] (4)

Having said this, the local classifier Ψh uses the next decision rule:

Ψ̄h(x) = i if F̂h(i, x) = maxj∈M F̂h(j, x) (5)

where

F̂h(i, x) =
k∑

l=1

wl
h(i)F (l)(i, x), (6)

and

k∑
l=1

wl
h = 1,∀i ∈M (7)

Finally, let us assume that for the training of the classifier we have a the
learning set LS, that consists in N learning objects. Then, LS is defined as:

LS = (x1, y1), (x2, y2), . . . , (xN , yN ) (8)

where xn denotes the values described in the n-th object, and yn denotes its
correct class label.As usual,LS is divided into two subsets: Training set |TS| = T ,
used during training, and Validation set |V S| = N−T . In this way, the optimization
criteria for the global combined classifier is formulated as:

Q(Ψ) = Q̂(Ψ, TS) (9)

where Q̂ refers to a specific performance metric of the classifier Ψ in the Training
set TS (e.g. accuracy, Area Under the Curve, etc.) that is defined according to the
user’s preferences. In the next subsection, we explain the description and workflow
of the training algorithm based on the hybrid metaheuristic GACE.

3.2 Description of the training algorithm

The objective of the training algorithm is to learn the best combination of cluster
centroids C = {C1, . . . , CH} and ensemble weights W = {W1, . . . ,WH} that mini-
mizes the objective function described in Equation 9, given set of base classifiers
Ψ1, Ψ2, . . ., Ψk. To solve this optimization problem we used the GACE method, as
mentioned before. GACE is a hybrid algorithm that combines Genetic Algorithm
with Cross Entropy in order to take advantage of the exploratory ability of GA as
a search algorithm and the exploitation capability of CE to create synergy between
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them. The benefits of GACE as optimization method are supported by its goods
results in areas as optimization of Hierarchical Fuzzy Rule-Based Systems [45] or
continuous functions [44].

The general working of the training method is as follows (its pseudocode is
given in Algorithm 1). First, the initial population (POP ), with POPsize individ-
uales, is randomly generated following the structure of the codification of the solu-
tion. In each generation, the population is then divided into two subpopulations,
GApop and CEpop, withGAsize and CEsize individuals (POPsize = GAsize+CEsize),
respectively. The individuals of GApop are chosen using the corresponding selec-
tion operator, while the individuals in CEpop are the CEsize best individuals in
the current population POPt. In GApop, the crossover and mutation operators of
the GA are applied, while in CEpop, the CE method is used to evolve the corre-
sponding sub-population. Both subpopulations of new individuals are joined into
a single population that then completely replaces the previous one. This process is
iteratively repeated until a specified stop condition is reached. Interested readers
are referred to [45] for more information about the hybrid algorithm.

Data: POPsize, pga, pc, pm, Lr, pup, Tmax

Result: Best individual found
1 GAsize ←‖ POPsize · pga ‖
2 CEsize ← POPsize −GAsize

3 nup ←‖ CEsize · pup ‖
4 t← 0
5 POP0,← Initialize(POPsize)

6 M ← Initialize Means vector
7 S ← Initialize Standard Deviation vector
8 Evaluate POP0

9 while t < Tmax do
10 GApop ← SelectionOperator(POPt, GAsize)
11 CEpop ← SelectBestSamples(POPt, CEsize)
12 OffspringGA ← Crossover(GApop, pc)
13 OffspringGA ← Mutation(OffspringGA,pm)

14 OffspringCE ← Generate(CEpop, CEsize,M, S)

15 M ← UpdateMeans(Lr,M,OffspringCE , nup)
16 S ← UpdateDeviation(Lr, S,OffspringCE , nup)
17 POPt+1 ← OffspringGA

⋃
OffspringCE

18 Evaluate POPt+1

19 Add the best individual found to POPt+1 if it is not in the population
20 t← t + 1

21 end

Algorithm 1: Pseudocode of the workflow followed by the optimization method
GACE

In the next part of this subsection, we will explain the codification used for the
solutions, the initialization process of the population, and the specific crossover
and mutation operators employed.

3.2.1 Codification of the solution

In a formal way, one individual in the population is composed of two different
parts: one of them codifies the centroids of the partitions (C), and the other one
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Fig. 1 Structure of an individual in the population with H = 3 areas, k = 3 classifiers and
m = 2 classes.

contains the weights used in the discriminant functions of the ensemble classifiers
(W ). Figure 1 shows an individual with the described structure.

The part codifying the centroids C is represented as an array of H elements,
where H is the number of areas or partitions defined by the user. Each centroid ch,
where h ∈ [1 · · ·H] is the index of the partition, is a vector with the same number
of elements as the dimension of the dataset d.

As mentioned in previous sections, there are H matrices contained in W . Each
of these matrices, Wh, h ∈ [1 · · ·H], has k ×m values, where k is the number of
classifiers used in the ensemble and m is the number of classes in the dataset,
as mentioned before. Each value is the weight that the discriminant function of
the classifier l to determine the class i of an instance assigned to in area h. For
example, w3[1, 2] is the weight for the first classifier to determine the second class
in the third partition. Each of the possible solutions is represented as shown in
Equation 10.

Ind(C,W ) =

{
C = (C1, C2, . . . CH)

W = (W1,W2, . . .WH)
(10)

Where ch = (v1, v2, . . . vd) and Wh = {Wh[1, 1], ...Wh[k,m]}. Then, GACE is ap-
plied to achieve the following goals:

1. Tuning the position of the different centroids C in the feature space.
2. Adjust the values of the weight matrices W , for the different classifiers and

classes.
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3.2.2 Initialization of the population

For the initial population, each value in Ch is initialized with a random value in
the interval [minr, maxr], where maxr and minr are the upper and lower bounds
of the r-th dimension of the feature space.

For the weights, each value of the matrices is initialized randomly in the interval
[0, 1] and then normalized to ensure that they sum one for each class. As mentioned,
each Ch has a size equal to the number of the variables in the feature space, and
each Wh has a size of k classifiers per m classes.

3.2.3 Operators of the sub-populations

Different operators are applied in each subpopulation. Selection, crossover, and
mutation operators are used in the case of GApop. As selection operator, Tourna-
ment Selection [21] has been adopted. This operator chooses two random individ-
uals in the population and selects the best one according to their fitness. A total of
GAsize individuals are chosen by this operator to form the GApop subpopulation.
The crossover operator chose was BLX-α [17]. Given two parents X = (x1 . . . xz)
and Y = (y1 . . . yz), for each element i, BLX-α crossover creates two offspring by
generating random values in the interval shown in Equation 11, with α ∈ [0, 1].
The choice of this crossover is justified due to its good synergy between exploration
and exploitation of the individual [24].

[min(xr, yr)− α|xr − yr|, max(xr, yr) + α|xr − yr|] (11)

Gaussian mutation [4] is taken as the mutation operator. Each element xi of
an individual is updated according to Equation 12:

ar = N (xr,
maxr −minr

10
) (12)

where N is a normal distribution with mean xr and standard deviation (maxr -
minr).

4 Experimentation

This section presents the results of the experimentation carried out. The objectives
of this experimentation are listed below:

– To validate the performance of the proposed ensemble classification approach
based on AdaSS and GACE over complex imbalanced data-sets and real-world
problems.

– To analyse the influence of the algorithm used to generate the base classi-
fiers and the sizes of the sub-populations of GACE in the performance of the
proposal.

– To compare the approach with different state-of-the-art algorithms in imbal-
anced classification.

The section is structured as follow. In Section 4.1, the different datasets and
their main characteristics are presented. The parameter settings and base classifiers
are presented in Section 4.2. The analysis of the results and the comparison versus
the state-of-the-art are presented in Section 4.3.
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No. Name Objects Features IR
1 Ecoli1 220 7 3.36
2 Ecoli3 336 7 8.6
3 Glass1 214 9 1.82
4 Glass6 214 9 6.28
5 Iris0 150 4 2
6 Page-blocks0 5472 10 8.79
7 Pima 768 8 1.87
8 Vehicle1 846 18 2.9
9 Yeast1 1484 8 2.46
10 Yeast3 1484 8 8.1

11 Glass016vs2 192 9 10.29
12 Ecoli4 336 7 14.3
13 Glass016v5 184 9 19.44
14 Glass5 214 9 22.78
15 Dermatology6 358 34 16.9
16 Shuttle6 230 9 22
17 Poker9 244 10 29.5
18 Yeast28 482 8 23.1
19 Yeast4 1484 8 28.1
20 Led7digit 443 7 10.97

21 Ecoli0137 281 7 39.14
22 WineRed8 656 11 35.44
23 WineWhite9 168 11 32.6
24 Yeast6 1484 8 41.4
25 Poker896 1485 10 58.4
26 WineWhite395 1482 11 58.28
27 Shuttle25 3316 9 66.67
28 WineRed35 691 11 68.1
29 Poker895 2075 10 82
30 Poker86 1477 10 85.88

Table 1 Details of imbalanced datasets used in the experimentation

4.1 Datasets

A total of 30 imbalanced datasets of different complexity have been extracted
from the KEEL repository1 in order to test the performance of the proposal in
different kinds of scenarios. These datasets chosen have been used extensively in
the literature. Table 1 shows the characteristics of each dataset: name, number
of instances, features, classes, and Imbalance Ratio (IR) [76, 77], which is the
ratio between the number of instances from the majority and minority classes.
The larger the ratio is, the more imbalanced the dataset. The number of classes in
these imbalanced datasets is two, which means that we are dealing with imbalanced
binary classification. These classes are defined as positive (minority class) and
negative (majority class).

In addition, real-world datasets have been used in order to apply the proposal
to traffic congestion forecasting in a road; the data collected comes from Lisbon
highway A5 and was used in EU FP7 project ICSI2. This highway is a 25 km long
motorway in Portugal that connects Lisbon with Cascais. Data from a total of
10 sensors in the road have been transformed into datasets, and the proposal has

1http://sci2s.ugr.es/keel/datasets.php
2http://www.ict-icsi.eu/
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been applied to forecast the congestion in each one of them. Each dataset contains
9 variables: day of the week, hour of the day, number of motorbikes, number of
cars, number of trucks, number of buses, number of other types of vehicles, total
number of vehicles, and a class called nextlevel. This class contains the value of
congestion that appears in the next hour at a certain point and can take as values
{LOW,MED,HIG}. The level of congestion is defined to be LOW if the total
number of vehicles counted is below the 15th percentile, MED (Medium) if it is
above the 15th percentile but below the 30th, and HIG (High), otherwise. In the
present paper, HIG is the positive class (minority class), and LOW and MED will
form the negative class (majority class). The three first weeks of the month were
used as the training set and the last week as the test set. This group of datasets
will be referred to as A5-Traffic in the following sections.

4.2 Parameter Settings

This section presents the parameter settings establish for the experimentation and
the definition of the base classifiers. Three different algorithms have been used for
creating the baseline classifiers:

– Minimal distance classifier, which applies the 3-nearest neighbors (3-NN) al-
gorithm [11].

– A Neural Network (NN) method [28], trained with back-propagation algorithm.
The number of neurons depends on the dataset used: the size of the input layer
is equal to the number of features. The size of the output layer is equal to the
number of classes. The number of neurons in the hidden layer is equal to one-
half of the sum of the numbers of neurons in the input and output layers. In
this case, the total number of iterations was set to 2000 in order to have a fair
comparison and not take so much time for bigger datasets.

– Support Vector Machine (SVM) classifier [7], using the sequential minimal
optimization procedure with a polynomial kernel.

A homogeneous pool was used in this experimentation, that is, all the base
classifiers in the ensemble are built with the same algorithm. To induce diversifi-
cation, each classifier is trained with a subset of 1/k-th instances from the training
set, where k = 3 is the number of classifiers in the pool. Each subset is mutually
exclusive from each other and contains the same distribution of examples as the
training set. In this way, each ensemble in the experimentation created with our
proposal will have tree base classifiers generated with the same algorithm (3-NN,
NN or SVM) each one trained with 1/3 of the instances of the dataset. Focusing
on the parameters of the algorithm used in the experimentation, the population
size (POPsize) has been set to 50, and the size of the GA subpopulation to 40 or
45 individuals, GAsize = {40, 45}. The reason for setting POPsize to this value is
because of the good performance shown in other classification and optimization
tasks [44]. Besides, in those papers, a population with a higher value of GAsize

than the size of the CE subpopulation (CEsize) tended to show better results [45].
As for the GA part parameters, the crossover probability pc was set to 0.85 and
the mutation probability pm to 0.1. Regarding the CE parameters, the learning
rate value Lr is usually recommended to be set within the interval [0.7, 0.9]. In this
case, Lr = 0.7 was chosen. The parameter nup, i.e. the number of individuals that
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Parameter Symbol Values
Population size POPsize 50
GA pop. size GAsize {40, 45}
CE pop. size CEsize {10, 5}

Crossover probability pc 0.85
Mutation probability pm 0.1

Learning rate lr 0.7
No. update nup 0.4 CEsize

No. of areas H 3
No. of classifiers k 3
No. of iterations Tmax 200

Table 2 Values of the parameters used in the experimentation

is used to update the CE means and standard deviations, was set to nup = 0.4×
CEsize. The number of partitions H is the same as in the present authors’ previous
paper, and was set to H = 3. The number k of classifiers in each pool was also
set to 3. The stop condition was designed as follows: in first place, it checks if the
best solution does not change in 20 generations, and if so the execution is stopped.
Otherwise, it checks if a maximum number of generations Tmax = 200 is fulfilled,
stopping the execution in that case. The summary of the parameter settings is
presented in Table 2.

4.3 Results

This section presents the results obtained by the proposal using the different con-
figurations mentioned before. A broad comparison of these results with those ob-
tained by state-of-the-art techniques from the literature is made. The following
classification techniques from the literature have been used for this comparison:

– RUSBoost (RUS) [56] removes instances from the majority class by randomly
undersampling the dataset in each iteration. After training a classifier, the
weights of the original dataset instances are updated, and then another sam-
pling phase is applied.

– UnderBagging to OverBagging (UOBag) [61] makes use of both oversampling
and undersampling. One of the keys of this algorithm is that the diversity is
boosted using a resampling rate in each iteration. This rate defines the number
of instances taken from each class. Hence, the first classifiers are trained with
a smaller number of instances than the last ones.

– Class and Prototype weighted classifier (CPW) [51] is a method of extracting
weights associated to prototypes and classes, with the aim of enhancing the
classification accuracy of the 1-NN rule.

– Adaboost [32] is a boosting algorithm which repeatedly invokes a learning
algorithm to successively generate a committee of simple, low-quality classifiers.

– FARCHD [1] is a three-stage fuzzy association rule-based classification model
which aims to obtain an accurate and compact fuzzy rule-based classifier with
a low computational cost.

– Multilayer perceptron for Cost-Sensitive classification problems (NNCS) [71]
uses a multilayer Perceptron to classify a dataset of examples with minimal
cost.
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It is important to note that some of the compared techniques use a pre-
processing algorithm to modify the data before its execution. RUS uses SMOTE,
and UOBag applies resampling to the data before the application of C4.5 as a
base classifier. The techniques mentioned above have been included to determine
whether the performance of the proposal of this paper, to which we will refer
asAdaSSGACE, reaches or exceeds that of state-of-the-art techniques that do use
pre-processing techniques.

KEEL [2] has been used for running the state of the art techniques, and MAT-
LAB r2017 using PRTools Toolbox 3 for the execution of AdaSSGACE. The ex-
periments were carried out on an Intel Xeon E5 2.30 GHz computer with 32 GB of
RAM. For validation, 5-fold cross-validation was used. The number of repetitions
made for each method was set to 10. The performance metric that we used to set
the function Q̂(Ψ, TS) defined in Equation 9 is the Area Under the ROC Curve
(AUC), which is calculated as in Equation 13:

AUC =
1 + TPrate − FPrate

2
(13)

where TPrate and FPrate correspond to the True Positive ratio and the False
Positive ratio, respectively. This metric is used in order to compare imbalanced
datasets in a fair way. It indicates the central tendency of the results obtained
by each method. The configurations of the proposed technique are denoted by
AdaSSGACEBC,GAsize

, where BC (either K-NN, NN, or SVM) is the algorithm
used to generate the three base classifiers of the ensemble, and GAsize is the size
of the GA subpopulation. In this way, AdaSSGACEKNN.40 indicates that this
ensemble has three base classifiers generated with KNN and the GAsize parameter
was set to 40.

Table 3 shows the results obtained by the techniques in the imbalanced datasets
with IR less than 10. Bold values represent the two best AUC values obtained on
the corresponding dataset. The most remarkable configurations of the proposal are
those formed by the couple (K-NN, 40) and by SVM with both population sizes.
In the case of the techniques from the state of the art, RUS and UOBag are the
two techniques with better results, with similar values which, in turn, are similar
to those obtained by AdaSSGACEKNN,40.

Ecoli1 Ecoli3 Glass1 Glass6 Iris0 Page-blocks0 Pima Vehicle1 Yeast1 Yeast3
AdaSSGACEKNN.40 0.890 0.864 0.750 0.889 0.999 0.931 0.703 0.673 0.700 0.897
AdaSSGACENN.40 0.833 0.734 0.647 0.903 0.970 0.880 0.738 0.778 0.711 0.890
AdaSSGACESV M.40 0.872 0.785 0.639 0.641 0.841 0.751 0.589 0.651 0.688 0.891
AdaSSGACEKNN.45 0.223 0.202 0.468 0.425 0.140 0.930 0.699 0.684 0.701 0.897
AdaSSGACENN.45 0.799 0.739 0.649 0.905 0.963 0.883 0.733 0.766 0.710 0.889
AdaSSGACESV M.45 0.875 0.761 0.635 0.647 0.910 0.757 0.577 0.652 0.681 0.892

RUS 0.884 0.840 0.780 0.921 0.990 0.956 0.725 0.786 0.701 0.919
UOBag 0.876 0.886 0.739 0.901 0.970 0.953 0.730 0.745 0.720 0.919
CPW 0.812 0.747 0.775 0.871 1.000 0.871 0.664 0.628 0.664 0.827

Adaboost 0.843 0.799 0.613 0.880 1.000 0.840 0.742 0.702 0.599 0.805
FARCHD 0.857 0.753 0.718 0.894 1.000 0.754 0.704 0.624 0.671 0.854

NNCS 0.854 0.856 0.607 0.851 1.000 0.736 0.727 0.660 0.677 0.743

Table 3 AUC obtained by the techniques on imbalanced datasets with IR less than 10

Table 4 shows the results obtained for those datasets with IR between 10
and 30. As in the previous table, bold values represent the two best AUC val-

3prtools.org/prtools/prtools-overview/
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ues obtained on each dataset. In this case, those configurations that used K-NN
to generate the base classifiers obtain, on average, better results than the rest of
AdaSSGACE configurations, although the NN configurations also get similar re-
sults. As for the state-of-the-art techniques, RUS and UOBag continue obtaining
good performance on almost every dataset. Also remarkable is the performance
obtained by the FARCHD technique, which improves the values obtained when it
was applied to those datasets with IR less than 10.

Dermatology Ecoli4 Glass016vs2 Glass016v5 Glass5 Led7digit Poker9 Shuttle6 Yeast28 Yeast4
AdaSSGACEKNN.40 0.938 0.933 0.708 0.867 0.804 0.851 0.740 0.960 0.796 0.798
AdaSSGACENN.40 0.966 0.760 0.630 0.796 0.718 0.856 0.563 0.920 0.720 0.739
AdaSSGACESV M.40 0.749 0.907 0.611 0.733 0.675 0.785 0.636 0.843 0.737 0.509
AdaSSGACEKNN.45 0.946 0.940 0.678 0.863 0.785 0.845 0.705 0.965 0.801 0.799
AdaSSGACENN.45 0.979 0.805 0.594 0.832 0.764 0.839 0.586 0.894 0.711 0.709
AdaSSGACESV M.45 0.768 0.917 0.592 0.697 0.724 0.785 0.628 0.833 0.742 0.514

RUS 0.966 0.896 0.700 0.954 0.949 0.894 0.590 0.902 0.747 0.827
UOBag 0.938 0.867 0.629 0.963 0.988 0.881 0.556 0.948 0.778 0.763
CPW 0.500 0.870 0.577 0.836 0.893 0.500 0.950 0.900 0.769 0.677

Adaboost 0.500 0.842 0.494 0.891 0.995 0.910 0.572 0.900 0.770 0.548
FARCHD 0.949 0.872 0.491 0.789 0.745 0.883 0.848 1 0.700 0.565

NNCS 0.893 0.660 0.471 0.880 0.995 0.647 0.604 0.813 0.652 0.543

Table 4 AUC obtained by the techniques on imbalanced datasets with IR in the interval
[10,30]

Finally, Table 5 contains the results obtained by the techniques in those datasets
with IR greater than 30. As in previous cases, K-NN configurations lead to better
performance. Following the results obtained in the previous datasets, RUS tech-
nique obtains the best results among the state-of-the-art techniques. In this case,
FARCHD improves the results obtained by UOBAG, placing itself as the second
best state-of-the-art technique in this case. While the results of the proposal con-
figurations are close, equal or improve the results obtained by the best techniques
in most cases, in some datasets such as Poker896 they are far from the best results.
This may be due to the fact that in datasets with high IR a bagging or boosting
method significantly improves the obtained results.

Ecoli0137 Poker895 Poker896 Poker6 Shuttle25 WineRed35 WineRed8 WineWhite395 WineWhite9 Yeast6
AdaSSGACEKNN.40 0.790 0.631 0.618 0.528 0.986 0.590 0.589 0.535 0.608 0.875
AdaSSGACENN.40 0.848 0.507 0.572 0.576 0.874 0.559 0.588 0.558 0.598 0.772
AdaSSGACESV M.40 0.682 0.588 0.557 0.469 0.672 0.580 0.528 0.531 0.576 0.515
AdaSSGACEKNN.45 0.814 0.629 0.623 0.526 0.982 0.608 0.578 0.535 0.645 0.868
AdaSSGACENN.45 0.848 0.507 0.586 0.551 0.912 0.579 0.588 0.561 0.580 0.757
AdaSSGACESV M.45 0.685 0.596 0.483 0.494 0.642 0.597 0.535 0.560 0.566 0.524

RUS 0.896 0.547 0.915 0.631 1 0.644 0.815 0.674 0.893 0.851
UOBag 0.867 0.618 0.534 0.584 1 0.615 0.700 0.576 0.714 0.814
CPW 0.870 0.517 0.504 0.504 1 0.494 0.541 0.537 0.894 0.734

Adaboost 0.842 0.495 0.735 0.864 0.929 0.547 0.528 0.599 0.685 0.598
FARCHD 0.872 0.500 0.960 0.900 1 0.499 0.498 0.500 0.788 0.599

NNCS 0.660 0.529 0.503 0.451 0.590 0.583 0.664 0.444 0.418 0.686

Table 5 AUC obtained by the techniques on imbalanced datasets with IR greater than 30

The AUC obtained by the techniques on the A5-Traffic datasets are collected in
Table 6. A total of 10 real-data datasets are used, and each execution was repeated
10 times. The name of each column corresponds to the name of the dataset. For
this part of the experimentation, the results obtained by all the techniques are
similar. The techniques mentioned in the previous experiments maintain good
performance, while others with poorer results, such as CPW or Adaboost, improve
their performance on these datasets.
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CL400 CL600 CL1505 CL1980 CL3600 CL4000 CL6800 CL7100 CL8050 CL9400

AdaSSGACEKNN.40 0.913 0.869 0.945 0.956 0.881 0.945 0.810 0.922 0.961 0.845
AdaSSGACENN.40 0.925 0.846 0.966 0.956 0.887 0.956 0.809 0.946 0.961 0.905
AdaSSGACESV M.40 0.916 0.785 0.927 0.953 0.707 0.952 0.817 0.908 0.963 0.697
AdaSSGACEKNN.45 0.909 0.868 0.949 0.954 0.873 0.947 0.806 0.923 0.960 0.850
AdaSSGACENN.45 0.915 0.828 0.969 0.953 0.891 0.954 0.828 0.940 0.959 0.886
AdaSSGACESV M.45 0.916 0.803 0.931 0.957 0.644 0.953 0.812 0.860 0.961 0.741

RUS 0.975 0.978 0.952 0.949 0.940 0.961 0.889 0.950 0.951 0.663
UOBag 0.997 0.966 0.966 0.949 0.922 0.958 0.889 0.937 0.965 0.825
CPW 0.967 0.868 0.965 0.500 0.852 0.500 0.864 0.975 0.500 0.967

Adaboost 0.950 0.894 0.966 0.938 0.927 0.938 0.839 0.958 0.948 0.971
FARCHD 0.905 0.841 0.984 0.945 0.873 0.935 0.864 0.962 0.957 0.929

NNCS 0.863 0.876 0.945 0.887 0.829 0.933 0.818 0.914 0.933 0.850

Table 6 AUC obtained by the techniques on A5-Traffic datasets

To assess whether the differences in performance observed in the previous tables
are significant or not, it is necessary to perform statistical tests. For this reason,
in this article we follow the guidelines proposed in [13], where non-parametric
statistical testing is suggested in situations like the one faced in this study (several
datasets, algorithms and configurations).

First, the Friedman test [13] has been used for multiple comparisons to check if
significant differences exist among the set of algorithms. Besides this, the average
rank return by this test allows sorting the algorithms in terms of performance.
Each column of Table 7 shows the mean ranking provided by this non-parametric
test for each group of datasets (imbalanced with IRs and A5-Traffic), and globally
over all datasets. The best global rank is obtained by RUS on all the datasets,
followed by UOBag. The proposal configuration which obtains the best rank so
far is (K-NN, 40), followed by (NN, 40). Looking at each group of datasets, we
can see that RUS gets the best average ranking in the groups with IR lower than
10 and higher than 30, AdaSSGACEKNN,40 in the datasets with IR between 10
and 30, and UOBag in A5-Traffic.

< 10 [10, 30] > 30 A5-Traffic Global
AdaSSGACEKNN.40 4.45 3.75 5.25 7.1 5.61
AdaSSGACENN.40 5.65 7.25 6.95 5.15 6.56
AdaSSGACESV M.40 8.6 8.75 9.45 8.5 9.075
AdaSSGACEKNN.45 8.7 3.8 5.45 7.55 6.75
AdaSSGACENN.45 6 7.6 6.75 5.75 6.86
AdaSSGACESV M.45 8.3 8.65 8.7 8.15 8.77

RUS 2.8 3.85 2.25 4.6 3.73
UOBAG 3.2 5.05 3.75 3.8 4.53

CPW 8.05 7.2 6.75 6.7 5.57
Adaboost 6.95 6.65 6.85 5.1 5.52
FARCHD 7.45 6.5 6.35 6.4 7.06

NNCS 7.85 8.95 9.5 9.2 7.92

Table 7 Results of Friedman test for all the techniques used

To assess if the performance of the best technique in the experimentation
is significantly different from the other techniques from the state-of-the-art, we
applied Holm’s [27] and Finner’s [19] post-hoc tests. Table 8 shows the results
returned by the Holm’s and Finner’s post-hoc tests using RUS as the control
method since it obtained the best average rank. These tests were applied for each
group of dataset, and globally over all datasets. The differences are considered
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<10 [10, 30] >30 A5-Traffic Global
Holm Finner Holm Finner Holm Finner Holm Finner Holm Finner

AdaSSGACEKNN.40 0.612 0.331 1.901 0.963 0.142 0.069 0.285 0.087 0.080 0.027
AdaSSGACENN.40 0.231 0.093 0.210 0.065 0.028 0.010 1.207 0.467 0.002 0.001
AdaSSGACESV M.40 0.003 0.003 0.019 0.014 0 0 0.036 0.019 0 0
AdaSSGACEKNN.45 0.003 0.003 1.901 0.975 0.142 0.057 0.160 0.054 0.001 0
AdaSSGACENN.45 0.189 0.064 0.136 0.046 0.032 0.010 0.906 0.298 0.001 0
AdaSSGACESV M.45 0.006 0.003 0.021 0.014 0.001 0 0.063 0.025 0 0

UOBAG 0.804 0.804 1.260 0.486 0.352 0.352 1.207 0.620 0.321 0.321
CPW 0.009 0.003 0.210 0.065 0.032 0.010 0.433 0.128 0.080 0.028

Adaboost 0.050 0.016 0.360 0.111 0.030 0.010 1.207 0.467 0.080 0.029
FARCHD 0.024 0.007 0.360 0.119 0.044 0.015 0.534 0.163 0 0

NNCS 0.012 0.004 0.014 0.014 0 0 0.009 0.009 0 0

Table 8 Results of Holm and Finner tests for the experimental techniques

significant when the p-value return by the test is lower than 0.05. The values are
rounded up to a maximum of 3 decimal places for the sake of the visualization.

These tests show that the results obtained by the proposed technique have no
significant differences from those obtained by the state-of-the-art technique when
the base classifiers are generated by K-NN and GAsize is set to 40, according to
Holm’s test, and only when the results are considered in a global way, according
to Finner’s test. In the rest of the configurations, with can find more significant
differences w.r.t. RUSBoost, especially in datasets with IR higher than 30 and
globally. Finally, in the case of state-of-the-art techniques, the reference technique
obtains significantly better results than all the techniques except UOBAG in global
values.

5 Conclusions

In this paper, we have presented a new ensemble classification approach for im-
balanced data based on feature space partitioning and hybrid metaheuristics, and
concretely, on the Adaptive Splitting and Selection Strategy and the GACE meta-
heuristic, respectively. The main objective of this new method was to deal with
imbalance data without the use of data-level methods that usually entails an extra-
cost in terms of the time required for preprocessing the data.

The developed technique has been applied to a total of 40 datasets of different
types: datasets with different imbalance ratios, and real imbalanced data-set with
traffic information. Furthermore, the proposal has been compared with state-of-
the-art classification techniques in the literature, such as RUSBoost, FARCHD,
CPW, Adaboost, and NNCS. The performance obtained by the proposed method
in most cases is similar to or better than the results obtained by the compared
techniques, regardless of whether or not they used data-level methods. The best
results so far have been obtained with configurations with KNN and NN as the
algorithm to generate the base classifiers, with different sizes for the genetic pop-
ulations. Statistical tests have been applied in order to corroborate the results
obtained.

As future lines of research, it would be interesting to use a heterogeneous pool
of classifiers instead of a homogeneous one. Also, another type of algorithms to gen-
erate the base classifiers could be explored. Configurations with various different
sizes of the GA sub-population could be applied in order to show a more dedicated
analysis to the optimization method in this theme. Besides, more techniques from
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the literature could be used for the comparison. In this paper, the experimenta-
tion is focused on the performance of the presented proposal in binary imbalanced
classification. In future works, OVO and OVA-based ensembles will be used with
multi-class imbalanced datasets, and a study about the time consuming and the
diversity of different population configurations will be made. Finally, in this work,
the hybrid method is formed by joining a GA and CE techniques. Other methods
such as PSO, ACO or BAT Algorithm could be used to replace either of the two
components in order to compare the performance against the proposal in ensemble
classification.

Acknowledgments

This work has been supported by the research projects TEC2013-45585-C2-2-R
and TIN2014-56042-JIN from the Spanish Ministry of Economy and Competi-
tiveness, and the TIMON project, which received funding from the European
Union Horizon 2020 research and innovation programme under grant agreement
No. 636220.

References

1. Alcala-Fdez J, Alcala R, Herrera F (2011) A fuzzy association rule-based
classification model for high-dimensional problems with genetic rule selection
and lateral tuning. IEEE Transactions on Fuzzy Systems, 19(5):857–872
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