
Better and Faster
Hyperparameter Optimization

with Dask-ML

Scott Sievert
@stsievert

Tom Augspurger
@TomAugspurger

Matthew Rocklin
@mrocklin

https://github.com/stsievert/talksTweet by @stsievert under #SciPy2019 tag

https://github.com/stsievert
https://github.com/stsievert/talks

• What is a hyperparameter?

• What’s hyperparameter optimization?

• What new opportunities can Dask enable?

• How should the chosen algorithm be used, and how
does it perform?

https://github.com/stsievert/talks

https://github.com/stsievert/talks

What is a hyperparameter?

Model: polynomials of degree d
	y	=	x**d	+	x**(d-1)	+	…	+	x

Train data

d=1 d=3 d=

Unseen
validation data

https://github.com/stsievert/talks

A free parameter not learned from data.

Typically used to define model structure.

https://github.com/stsievert/talks

Example

…

https://distill.pub/2016/misread-tsne/ Scikit-learn docs recommend perplexity values between 5–50

perplexity	
early_exaggeration	

metric	
learning_rate	

n_iter	
init

https://distill.pub/2016/misread-tsne/

Finding the best set of
hyperparameters

Dask-ML will find the best set of
hyperparameters quickly

What’s hyperparameter optimization?

https://github.com/stsievert/talks

https://github.com/stsievert/talks

What other algorithms solve the
“hyperparameter optimization”

problem?

https://github.com/stsievert/talks

https://github.com/stsievert/talks

Popular algorithm for hyperparameter
optimization

Scikit-learn’s RandomizedSearchCV:

1. Randomly pick hyperparameters
2. Create models with those hyperparameters
3. Train model to completion
4. Report validation score

model 4

model 2

model 3

model 1

time

https://github.com/stsievert/talks

https://github.com/stsievert/talks

RandomizedSearchCV

✓Simple implementation

✓Easy to parallelize

❌ Does not limit computation

Computation will be significant for any
complicated hyperparameter search*.

* Bergstra, Bardenet, Bengio, &
Kégl. (2011). Algorithms for

hyper-parameter optimization.
https://github.com/stsievert/talks

https://github.com/stsievert/talks

Hyperparameter optimization
+

Dask-ML

What algorithm is implemented in Dask-ML?

Why is it well-suited for Dask?

https://github.com/stsievert/talks

https://github.com/stsievert/talks

Clusters

Giant
datasets

Dask

Memory

Computation

Local
machine

 Dask natively scales Python

Dask provides advanced parallelism for analytics,
enabling performance at scale for the tools you love

Selling points:
Easy to use
Declarative
Diagnostics

https://github.com/stsievert/talks

https://github.com/stsievert/talks

How can the computation be limited?

Early stopping of low performing models

With
early stopping

time

RandomizedSearchCV has nice features,
but can have excessive computation

This naturally requires
partial_fit	or	warm_start

https://github.com/stsievert/talks

Dask already has an
implementation of

RandomizedSearchCV

by Jim Crist, @jcrist

https://github.com/stsievert/talks
https://github.com/jcrist

Hyperband
Principled early stopping scheme

for random hyperparameter selection.
Hyperband will* return high performing models

with minimal training:

*with high probability

Close to the lower bound
on the “number of
resources” required1

1

Number of
partial_fit calls

https://github.com/stsievert/talks

https://github.com/stsievert/talks

time

Sweeps over relative
importance of training time

Hyperband: intuition

https://github.com/stsievert/talks

Training time
most important

time

Hyperparameter
exploration

most important

time

https://github.com/stsievert/talks

Hyperband architecture
Hyperband is an early stopping scheme for randomized search.

def	early_stopping(n_models:	int,	calls:	int,	max_iter:	int):	
						->	BaseEstimator:	
				models	=	[get_model()	for	_	in	range(n_models)]	
				while	True:	
								models	=	[train(m,	calls)	for	m	in	models]	
								models	=	top_k(models,	k=len(models)	//	3)	#	3	aka	agressiveness	
								calls	*=	3	
								if	len(models)	<	3:	
												return	top_k(models,	k=1)	

def	hyperband(max_iter:	int)	->	BaseEstimator:	
				brackets	=	[…	for	b	in	range(formula(max_iter))]	

				#	Each	tuple	is	(num_models,	n_init_calls)	
				final_models	=	[early_stopping(n,	r,	max_iter)	for	n,	r	in	brackets]	
				return	top_k(final_models,	k=1)

Number of models is reduced

https://github.com/stsievert/talks

https://github.com/stsievert/talks

Hyperband

✓Simple implementation

✓Easy to parallelize

✓Effectively limits computation for
complicated search spaces

✓Mathematical justification

https://github.com/stsievert/talks

https://github.com/stsievert/talks

from	dask_ml.model_selection	import	HyperbandSearchCV

Hyperband in Dask-ML

What inputs are required?

How does it perform?

https://github.com/stsievert/talks

Dask enables better performance.

This is the first Hyperband implementation
with an advanced job scheduler*

* to my knowledge

https://github.com/stsievert/talks

Laptop w/ 4 cores

Scikit-learn model

Dask-ML implementation:

Example 1

https://github.com/stsievert/talks

https://github.com/stsievert/talks

Synthetic simulation Dataset

params	=	{	
				“batch_size":	…,		#	5	choices	
				“learning_rate":	…,		#	2	choices	
				“hidden_layer_sizes”:	…,		#	5	choices	
				“alpha":	…,		#	continuous	
				“power_t”:	…,		#	continuous	
				“momentum":	…,		#	continuous	
				“learning_rate_init":	…,		#	continuous	
}	

Model
Scikit-learn’s neural network MLPClassifier

from	sklearn.neural_network	import	MLPClassifier	

model	=	MLPClassifier(solver=“sgd”,	…)

Search space
Discrete

hyperparameters:
50 unique choices

4 continuous
hyperparameters

Use case: initial exploration on data scientist’s
personal laptop.

https://github.com/stsievert/dask-hyperband-comparison https://github.com/stsievert/talks

https://github.com/stsievert/dask-hyperband-comparison
https://github.com/stsievert/talks

search	=	HyperbandSearchCV(
				model,	params,	
				max_iter=n_params,	
				aggressiveness=4,	
)

X_train,	y_train	=	rechunk(X,	y,	chunks=n_examples	//	n_params)	
max_iter	=	n_params

n_examples	=	50	*	len(X_train)	
n_params	=	299

HyperbandSearchCV usage

search.fit(X_train,	y_train)

https://github.com/stsievert/talks

Default aggressiveness=3.

aggressiveness=4 because this
hyperparameter search is initial

https://github.com/stsievert/talks

search.best_estimator_	
search.best_params_

search.metadata

https://github.com/stsievert/talks

https://github.com/stsievert/talks

How do HyperbandSearchCV and
RandomizedSearchCV perform?

200 runs with different random seeds.

The worst of the hyperband runs performs
better than 50% of the passive runs.

https://github.com/stsievert/talkshttps://github.com/stsievert/dask-hyperband-comparison

In these experiments, HyperbandSearchCV…

• finds high performing hyperparameters
with high confidence

• requires 1/3rd less data than RandomizedSearchCV to
reach a particular validation accuracy

https://github.com/stsievert/talks
https://github.com/stsievert/dask-hyperband-comparison

How does Dask help Hyperband?

Dask assigns higher priority to models with higher scores.

Serial environments benefit the most from this.

https://github.com/stsievert/talks

https://github.com/stsievert/talks

Dask implementation:

Example 2

Deep learning model with PyTorch

Cluster w/ up to 32 workers

https://github.com/stsievert/talks

https://github.com/stsievert/talks

Parallel experiment Dataset

Model
Custom built neural network with PyTorch (with wrapper Skorch)

from	autoencoder	import	Autoencoder	
from	skorch	import	NeuralNetRegressor	

model	=	NeuralNetRegressor(Autoencoder,	…)

Use case: many computational
resources, trying to optimize
hyperparameters

PyTorch

Search space

• 4 discrete hyperparameters w/
160 unique combos

• 3 continuous hyperparameters

params	=	{	
				“module__activation”:	…,		#	4	choices	
				“module__init”:	…,		#	4	choices	
				“batch_size":	…,		#	5	choices	
				“optimizer":	…,		#	2	choices	
				“optimizer__momentum":	…,		#	continuous	
				“optimizer__lr”:	…,		#	continuous	
				“weight_decay”:	…,		#	continuous	
}	

https://github.com/stsievert/talks

https://github.com/stsievert/talks

Parallel experiment

#	…	model/params/train	data/n_params	definition	

search	=	HyperbandSearchCV(
				model,	params,	
				max_iter=n_params,	
				patience=True,	
				tol=0.001,	
)	
search.fit(X_train,	y_train)

time required to
train one model

How does HyperbandSearchCV behave when the
number of workers is varied?

https://github.com/stsievert/talks

2.8x

1.25x

In this experiment,
HyperbandSearchCV

speedups saturate around
16–24 workers

https://github.com/stsievert/talks

Benefits of using Dask-ML
for hyperparameter optimization

To find the best hyperparameters,
Dask-ML will…

• return high scoring models with certainty

• require ~1/3rd of the data RandomizedSearchCV
requires in a serial environment

• require ~1.5x the time required for one model in
a parallel environment

https://github.com/stsievert/talks

Dask-ML’s hyperparameter optimization
finds high performing

hyperparameters quickly.

https://github.com/stsievert/talks

This code is available Dask-ML,
Dask’s machine learning library.

Dask-ML documentation: https://ml.dask.org/
Installation: https://ml.dask.org/install.html

https://github.com/stsievert/talks

https://ml.dask.org/
https://ml.dask.org/install.html
https://github.com/stsievert/talks

Thanks!

Questions?

https://github.com/stsievert/talks

https://github.com/stsievert/talks

Future work

Extend to case where models don’t
need partial_fit.

This will treat dataset size as the
scarce resource, not number of

partial_fit calls.

https://github.com/stsievert/talks

https://github.com/stsievert/talks

There is an asynchronous version of
Hyperband. Is that part of future work?

No. Dask’s advanced task scheduling
eliminates the need for that algorithm.

Specifically, the asynchronous variant is
designed to reduce time to solution when
brackets are run in serial.

https://github.com/stsievert/talks

https://github.com/stsievert/talks

