Dataset Open Access

Data from: Predictive mapping of the global power system using open data

Arderne, Christopher; NIcolas, Claire; Zorn, Conrad; Koks, Elco E.


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.3628142</identifier>
  <creators>
    <creator>
      <creatorName>Arderne, Christopher</creatorName>
      <givenName>Christopher</givenName>
      <familyName>Arderne</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-7904-2216</nameIdentifier>
      <affiliation>World Bank Group</affiliation>
    </creator>
    <creator>
      <creatorName>NIcolas, Claire</creatorName>
      <givenName>Claire</givenName>
      <familyName>NIcolas</familyName>
      <affiliation>World Bank Group</affiliation>
    </creator>
    <creator>
      <creatorName>Zorn, Conrad</creatorName>
      <givenName>Conrad</givenName>
      <familyName>Zorn</familyName>
      <affiliation>University of Oxford</affiliation>
    </creator>
    <creator>
      <creatorName>Koks, Elco E.</creatorName>
      <givenName>Elco E.</givenName>
      <familyName>Koks</familyName>
      <affiliation>University of Oxford</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Data from: Predictive mapping of the global power system using open data</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2020</publicationYear>
  <subjects>
    <subject>electricity</subject>
    <subject>infrastructure</subject>
    <subject>power</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2020-01-16</date>
  </dates>
  <resourceType resourceTypeGeneral="Dataset"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3628142</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsCitedBy" resourceTypeGeneral="Text">10.1038/s41597-019-0347-4</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.3369106</relatedIdentifier>
  </relatedIdentifiers>
  <version>1.1.1</version>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Three primary global data outputs from the research:&lt;/p&gt;

&lt;ul&gt;
	&lt;li&gt;&lt;strong&gt;grid.gpkg:&lt;/strong&gt; Vectorized predicted distribution and transmission line network, with existing OpenStreetMap lines tagged in the &amp;#39;source&amp;#39; column&lt;/li&gt;
	&lt;li&gt;&lt;strong&gt;targets.tif:&lt;/strong&gt; Binary raster showing locations predicted to be connected to distribution grid.&amp;nbsp;&lt;/li&gt;
	&lt;li&gt;&lt;strong&gt;lv.tif:&lt;/strong&gt; Raster of predicted low-voltage infrastructure in kilometres per cell.&lt;/li&gt;
&lt;/ul&gt;

&lt;p&gt;This data was created with code in the following three repositories:&lt;/p&gt;

&lt;ul&gt;
	&lt;li&gt;https://github.com/carderne/gridfinder&lt;/li&gt;
	&lt;li&gt;https://github.com/carderne/predictive-mapping-global-power&lt;/li&gt;
	&lt;li&gt;https://github.com/carderne/access-estimator&lt;/li&gt;
&lt;/ul&gt;

&lt;p&gt;Full steps to reproduce are contained in this file:&lt;/p&gt;

&lt;ul&gt;
	&lt;li&gt;https://github.com/carderne/predictive-mapping-global-power/blob/master/README.md&lt;/li&gt;
&lt;/ul&gt;

&lt;p&gt;The data can be visualized at the following location:&lt;/p&gt;

&lt;ul&gt;
	&lt;li&gt;https://gridfinder.org&lt;/li&gt;
&lt;/ul&gt;</description>
  </descriptions>
</resource>
1,089
1,010
views
downloads
All versions This version
Views 1,089533
Downloads 1,010868
Data volume 443.0 GB386.7 GB
Unique views 889438
Unique downloads 550476

Share

Cite as