
Importance-Driven Deep Learning System Testing
Simos Gerasimou

simos.gerasimou@york.ac.uk

University of York

York, UK

Hasan Ferit Eniser
∗

hfeniser@mpi-sws.org

MPI-SWS

Kaiserslautern, Germany

Alper Sen

alper.sen@boun.edu.tr

Bogazici University

Istanbul, Turkey

Alper Cakan

alper.cakan@boun.edu.tr

Bogazici University

Istanbul, Turkey

ABSTRACT
Deep Learning (DL) systems are key enablers for engineering intel-

ligent applications due to their ability to solve complex tasks such

as image recognition and machine translation. Nevertheless, using

DL systems in safety- and security-critical applications requires

to provide testing evidence for their dependable operation. Recent

research in this direction focuses on adapting testing criteria from

traditional software engineering as a means of increasing confi-

dence for their correct behaviour. However, they are inadequate

in capturing the intrinsic properties exhibited by these systems.

We bridge this gap by introducing DeepImportance, a systematic

testing methodology accompanied by an Importance-Driven (IDC)

test adequacy criterion for DL systems. Applying IDC enables to

establish a layer-wise functional understanding of the importance

of DL system components and use this information to guide the

generation of semantically-diverse test sets. Our empirical evalua-

tion on several DL systems, across multiple DL datasets and with

state-of-the-art adversarial generation techniques demonstrates the

usefulness and effectiveness of DeepImportance and its ability to

guide the engineering of more robust DL systems.

CCS CONCEPTS
• Deep Neural Networks; • Test Adequacy; • Safety; • Assur-
ance;

KEYWORDS
Deep Learning Systems, Test Adequacy, Safety-Critical Systems

ACM Reference Format:
Simos Gerasimou, Hasan Ferit Eniser, Alper Sen, and Alper Cakan. 2020.

Importance-Driven Deep Learning System Testing. In ICSE ’20: Proceedings
of the 42th International Conference on Software Engineering, May 23–29,
2020, Seoul, South Korea. ACM, New York, NY, USA, 12 pages. https://doi.

org/10.1145/1122445.1122456

∗
Work done while at Bogazici University

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICSE ’20, May 23–29, 2020, Seoul, South Korea
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-9999-9/18/06. . . $00.00

https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Driven by the increasing availability of publicly-accessible data

and massive parallel processing power, Deep Learning (DL) sys-

tems have achieved unprecedented progress, commensurate with

the cognitive abilities of humans [28, 46]. In fact, DL systems can

solve challenging real-world tasks such as image classification [22],

natural language processing [71] and speech recognition [34]. Con-

sequently, DL systems are becoming key enablers in many appli-

cations, including medical diagnostics [48], air traffic control [39],

network intrusion detection [23] and autonomous vehicles [13].

Despite the manifold potential applications, using DL systems in

safety- and security-critical applications requires the provision of

assurance evidence for their trustworthy and robust behaviour [15].

Vulnerabilities and defects in these systems, either originating from

systematic errors, insufficient generalisation or inadequate training,

can endanger human lives, lead to environmental damage or cause

significant financial loss [73]. Preliminary reports from safety advi-

sory boards (e.g., the US transportation board [4]) regarding recent

unfortunate events involving autonomous vehicles [3, 5] underline

not only the challenges associated with using DL systems but also

the urgent need for improved assurance evaluation practices.

From a safety assurance perspective, testing has been among

the primary instruments for evaluating quality properties of soft-

ware systems providing a trade off between completeness and effi-

ciency [38]. Domain-specific standards such as ISO26262 [25] and

DO-178C [63] prescribe testing principles (e.g., adequacy criteria,

testing properties) which should be employed for the verification

of applications within the automotive and avionics domains, re-

spectively. Evidence collected as a result of testing is typically used

to demonstrate compliance with expected quality assurance levels,

thus manifesting the ability of those systems to operate with an

acceptable risk of failure within their lifetime.

However, testing DL systems by simply adopting principles rec-

ommended by these standards is not straightforward [14, 68]. The

lack of a system specification regulating the inference mechanism

to be learnt combined with the data-driven programming paradigm

makes impossible to explicitly encode the expected DL system be-

haviour into its control flow structures [65]. The extremely large

configuration spaces of modern DL models deteriorates the issue

as it is impossible to determine and calibrate the influence of each

configurable parameter in completing a task; e.g., LeNet [45] and

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

ICSE ’20, May 23–29, 2020, Seoul, South Korea Simos Gerasimou, Hasan Ferit Eniser, Alper Sen, and Alper Cakan

VGG-16 [67] have more than 60K and 100M configurable parame-

ters, respectively. Thus, traditional software testing techniques and

coverage criteria [7] are inapplicable for DL system verification.

Driven by the need for providing high-quality assurance in DL

systems and inspired by traditional software engineering testing

paradigms [7], recent research proposes novel testing techniques

and coverage criteria [43, 51, 56, 56, 59, 70] (see Section 6 for an

overview of related work). The core principle underlying those tech-

niques is that for effective DL system testing, the test set should

be characterised by high diversity, thus enabling to exercise differ-

ent behaviours of the system [51]. For example, DeepXplore [59]

estimates the diverse DL system behaviour by calculating neuron
coverage as the ratio of neurons whose activation values are above

a predefined threshold. Similarly, the DeepGauge multi-granularity

testing criteria [51] generalise the neuron coverage concept and

calculate the ability of the test set to cover (i.e., trigger) major and

corner-case neuron regions, given by partitioning the ranges of

neuron activation values. Despite their usefulness, these criteria

are simply an aggregation of neurons (or neuron regions) whose

activation values conform to certain conditions. By focusing only

on these constrained neuron properties and ignoring the overall

DL system behaviour, the causal relationship between the test set

and decision-making is uninformative [43]. Also, the instantiation

of recently proposed techniques depends on user-defined condi-

tions (number of regions [51] or upper bounds [43]) which might

not represent the actual behaviour of the DL system adequately.

Finally, these criteria provide limited information about the testing

improvement contributed by individual test inputs as expected for

an effective testing adequacy criterion [7, 27].

In this paper, we bridge the gap in existing research by introduc-

ingDeepImportance, a systematic testingmethodology accompanied

by an Importance-Driven test adequacy criterion for DL systems

based on relevance propagation. By analysing the activity of a

DL system and its internal neuron behaviours, DeepImportance

develops a layer-wise functional understanding that signifies the

contribution of internal neurons to the output through the layers.

This contribution enables to determine the causal relationship be-

tween the neurons and the DL system behaviour as more influential

neurons have a stronger causal relationship and can explain which

high-level features influencemore the decision-making. DeepImpor-

tance establishes this relationship by computing a decomposition of

the decision made by the DL system and iteratively redistributing

the relevance in a layer-wise manner proportional to how promi-

nent each neuron and its connections are [11]. As we demonstrate

in Section 3.1, this importance score is quite different from the

neuron activation values used by similar DL testing techniques

(e.g., [51, 59]). Using those important neurons, DeepImportance

carries out neuron-wise quantisation to partition the space of each

neuron’s activity into an automatically-determined finite set of

clusters that captures its behaviour to a sufficient level of granu-

larity. The Importance-Driven adequacy criterion instrumented by

DeepImportance measures the adequacy of an input set as the ratio

of combinations of important neurons clusters covered by the set.

Our empirical evaluation using publicly available datasets (MNIST

[45], CIFAR-10 [1], Udacity self-driving challenge [2]) and DL sys-

tems whose models size ranges from small-medium (LeNet [45])

Camera

x1

LiDAR

IR Sensor

x2

x3

h11

h12

h13

h14

h21

h22

h23

h24

Hidden
layer 1

Hidden
layer 2

Input
layer

y1

y2

y3

Output
layer

Speed

Steering
angle

Brake

Figure 1: A four layer fully-connected DL system that re-
ceives inputs fromvehicle sensors (camera, LiDAR, infrared)
and outputs a decision for speed, steering angle and brake.

to large (e.g., Dave-2 [13]) demonstrates the ability of DeepIm-

portance to develop a functional understanding of the DL system

and evaluate the testing adequacy of a test set. Furthermore, the

Importance-Driven adequacy criterion is effective in quantifying

the ability of a DL system to identify defects as indicated by the

coverage difference between the original test set and adversarial

examples generated using state-of-the-art adversarial generation

techniques [19, 29, 44, 58].

Overall, the main contributions of our paper are:

• The DeepImportance approach for finding important neurons

of a DL system that are core contributors in decision-making

and thus guiding allocation of testing resources;

• The Importance-Driven Coverage criterion which can establish

the adequacy of an input set to trigger different combinations

of important neurons’ behaviours;

• AmextensiveDeepImportance evaluation on three public datasets

(MNIST, CIFAR-10, Udacity) and threeDL systems (LeNet, CIFAR-

10, Dave-2) showing its feasibility and effectiveness;

• A prototype open-source DeepImportance tool and a repository

of case studies, both of which are freely available from our

project webpage at https://github.com/YYY/DeepImportance.

To the best of our knowledge, DeepImportance is the first system-

atic and automated testingmethodology that employs the semantics

of neuron influence to the DL system as a means of developing a

laywer-wise functional understanding of its internal behaviour and

assessing the semantic adequacy of a test set.

The remainder of the paper is structured as follows. Section 2

presents briefly DL systems and coverage criteria in traditional

software testing. Section 3 introduces DeepImportance and Sec-

tion 4 presents its open-source implementation. Section 5 describes

the experimental setupand evaluation carried out. Sections 6 and 7

discuss related work and conclude the paper, respectively.

2 BACKGROUND

2.1 Deep Learning Systems
Fig. 1 shows a typical feed-forward DL system consisting of several

interconnected neurons arranged into consecutive layers: the input

layer, the output layer and at least one hidden layer [28]. Each layer

within a DL system comprises a sequence of neurons. A neuron

represents a computing unit that applies a nonlinear activation

https://github.com/YYY/DeepImportance

Importance-Driven Deep Learning System Testing ICSE ’20, May 23–29, 2020, Seoul, South Korea

Trained DNN

x1

x3

x2

x4

y1

y3

y2

Input
layer

Hidden
layer 1

Hidden
layer 2

Output
layer

Neuron
importance

analysis

training
set T

importance
method

Important neurons

x1

x3

x2

x4

y1

y3

y2

Hidden
layer 2

Input
layer

Hidden
layer 1

Output
layer

important
neuron

Important
neurons

clustering

clustering
method

clustered
important
neurons

Importance-
driven

coverage

testing
set U

coverage
results

coverage
oracle

Figure 2: DeepImportance workflow for determining the importance-based testing adequacy of a DL system.

function to its inputs and transmits the result to neurons in the

following layer [46]. Commonly used activation functions include

sigmoid, hyperbolic tangent and ReLU (Rectified Linear Unit). All

neurons, except from those in the input layer, are connected to

neurons in the following layer with weights whose values express

how strong are the connections among neuron pairs. A DL system’s

architecture comprises the number of layers, neurons per layer,

neuron activation functions and a cost function. Given such an

architecture, the DL system carries out an iterative training process

through which it consumes labelled input data (e.g, raw image

pixels) in its input layer, executes a set of nonlinear transformations

in its hidden layers to extract semantic concepts (i.e., features) from

the input data, and, finally, generates a decision that matches the

effect of these computations in its output layer. The training process

aims at finding weight values that minimize the cost function, thus

enabling the DL system to achieve high generalisability.

2.2 Coverage Criteria in Software Testing
Since testing a software system exhaustively is, in principle, impos-

sible due to its infinite number of possible inputs, coverage criteria

are typically employed to quantify how well a test suite exercises

the system [7, 60]. There are several types of coverage criteria, with

the most widely-adopted in industry being: statement coverage,

condition coverage, path coverage and branch coverage [38].

Testing techniques and coverage criteria are building blocks of

safety standards employed in various safety-critical domains such

as automotive and avionics (e.g., ISO26262 [25], DO-178C [63]). De-

pending on the integrity level associated with a system component,

different coverage criteria are mandated. For instance, ISO26262

requires to demonstrate compliance with statement coverage and

MC/DC (Modified Condition/Decision coverage) for components

whose integrity levels are the lowest (A) and highest (D), respec-

tively. The higher the risk from a component’s misbehaviour, the

higher its integrity level, and thus, more significant assurance (test-

ing) effort is required to avoid unreasonable residual risk.

3 APPROACH
DeepImportance, whose high-level workflow is shown in Fig. 2,

enables the systematic testing and evaluation of DL systems. Using

a pre-trained DL system, DeepImportance analyses the training set

T to establish a fundamental understanding of the overall contri-

bution made by internal neurons of the DL system. This enables to

identify the most important neurons that are core contributors to

the decision-making process (Section 3.1). Then, DeepImportance

carries out a quantisation step which produces an automatically-
determined finite set of clusters of neuron activation values that

characterises, to a sufficient level, how the behaviour of the most

important neurons changes with respect to inputs from the train-

ing set (Section 3.2). Finally, DeepImportance uses the produced

clusters of the most important neurons to assess the coverage ade-

quacy of the test set (Section 3.3). Informally, the Importance-Driven
test adequacy criterion of DeepImportance is satisfied when all

combinations of important neurons clusters are exercised.

We use the following notations to present DeepImportance. Let

D be a DL system with L layers. Each layer Li , 1 ≤ i ≤ L, comprises

|Li | neurons and the total number of neurons in D is S =
∑L
i=1 |Li |.

Let also ni, j be the j-th neuron in the i-th layer. When the context

is clear, we use n ∈ D to denote any neuron that is a member of D
irrespective of its layer. Let X denote the input domain of D and

x ∈ X be a concrete input. Finally, we use the function ϕ(x ,n) ∈ R
to signify the output of the activation function of neuron n ∈ D.

3.1 Neuron Importance Analysis
The purpose of importance analysis is to identify neurons within a

DL system that are key contributors to decision-making. Given an

input, information within a DL system is propagated according to

the strength of connections (weights) between neurons in succes-

sive layers. As such, the activity of some neurons influences more

the capabilities of the system to make correct decisions [46].

Although representation learning is a key characteristic of DL sys-
tems that eliminates the tedious and potentially erroneous process

of manual feature extraction, it also means that neurons develop,

through backpropagation [64], the ability to learn optimal feature

transformations for the given setting on their own [12]. More specif-

ically, raw input data passing through the complex architecture of a

modern DL system, with many layers, many neurons per layer and

non-linear transformations (e.g., ReLU activation functions [53],

max pooling, convolutions), yield abstract and discriminative fea-

tures that enable the system to make effective decisions in the final

layer using a log-linear model (typically softmax) [46]. For instance,

neurons within the initial hidden layers learn abstract shapes (e.g.,

ICSE ’20, May 23–29, 2020, Seoul, South Korea Simos Gerasimou, Hasan Ferit Eniser, Alper Sen, and Alper Cakan

Algorithm 1 Neuron importance analysis

1: function ImportantNeuronsAnalysis(D, X,m)

2: R ← ∅ ▷ relevant neurons vector

3: for all x ∈ X do
4: Rx ← ∅ ▷ x ∈ X importance vector

5: RL = ComputeValue(D, x) ▷ decision value

6: for all i ∈ {LL−1, ..., L1 } do ▷ relevance propagation

7: RL=Relevance(Li , x, RL) ▷ Li neurons relevance
8: Rx = Rx ⌢ RL ▷ append to vector Rx

9: R = R ∪ Rx ▷ collect relevance vectors

10: AN = Analyse(D, R) ▷ analyse relevance vectors

11: return Top(AN ,m) ▷ select topm neurons

edges, circles) while neurons in deeper layers extract more semanti-

cally meaningful features (e.g., faces, objects). Using as an analogy a

software system whose architecture adopts conventional software

engineering principles, neurons can be considered as functions that

execute a distinct functionality. Irrespective of the position of a

function into the control flow graph, it receives (transformed) in-

formation from functions preceding in the graph and itself applies

function-specific transformations before propagating the updated

information to subsequent functions in the control flow graph.

We capitalise on this unique characteristic of neurons within

a trained DL system to establish the importance of each neuron.

To achieve this, we compute a decomposition of the decision f (x)
made by the system for input x ∈ X and use layer-wise relevance
propagation [11] to traverse the network graph and redistribute the

decision value in a layer-wise manner proportional to the contribu-

tion made by each neuron within the layer. For a fully-connected

layer i , the relevance Ri j of the j-th neuron entails redistributing

relevance from neurons in layer i + 1 which is given by [11]:

Ri j =
∑
k

ϕ(x ,ni j)wi jk∑
i ϕ(x ,ni j)wi jk + ϵ

Ri+1,k (1)

where Ri+1,k is the relevance score of the k-the neuron in layer

i + 1,wi jk is the weight connecting neuron j to neuron k and ϵ is a

small stabilization term (to avoid division by zero).

Intuitively, the relevance attributed to neurons in layer i from
neurons in layer i + 1 is proportional to (i) the neuron activation

ϕ(x ,ni j), i.e., neurons with higher activation values receive a larger

relevance contribution; and (ii) the strength of the connectionwi jk ,

i.e., more relevance flows through more important connections.

While (1) applies to fully-connected layers, we refer interested

readers to [55] for definitions of redistribution rules for other layer

types including pooling, activation and normalisation layers.

The redistribution process is underpinned by a relevance con-
servation property specifying that at every step of the process (i.e.,

at every layer Li) the total amount of relevance (i.e., the predic-

tion) is conserved. No relevance is artificially added or removed.
1
.

Therefore,

∑ |L1 |
j R1j = · · · =

∑ |L4 |
k R

4k =
∑ |L5 |
l R

5l = · · · = f (x).

Algorithm 1 shows the high-level process for computing the

importance scores for neurons of D and selecting them most im-

portant. For any given input x ∈ X , we perform a standard forward

pass to compute the decision value, i.e., the magnitude of evidence

1
When neurons with bias contribute to the output, the relevance attribution to the

bias is redistributed onto each input of the decomposed layer using the method in [55].

Figure 3: Input from MNIST dataset with the most impor-
tant pixels contributing to the correct decision highlighted
(left), and difference between neuron activation values and
relevance scores (right) for the same set of neurons.

for a given class before applying softmax (line 5). Next, we perform

a backward pass (lines 6–8) considering each layer successively

during which the relevance is allocated to neurons of the current

layer before being backpropagated from one layer to another until

it reaches the input layer. The decomposition is achieved using the

layer-specific rules in [11]. The Analyse function (line 10) analyses

the relevance scores of all neurons for all inputs and prioritises

them based on a priority criterion (e.g., cumulative relevance, nor-

malised relevance). In our evaluation (Section 5), we use cumulative

relevance. Finally, the topm neurons are returned (line 11).

The use of relevance for identifying the most important neurons

is a key ingredient of our approach. Building on recent research

on explainability of DL systems, which targets the identification of

input parts responsible for a prediction, DeepImportance targets

the identification of the most influential neurons; these are high-
risk neurons that should be tested thoroughly. Albeit being outside

the scope of this work, we also highlight that other explainability-

driven techniques could be used for the identification of the most

important neurons (e.g., DeepLift [66], L2X [20]).

State-of-the-art testing adequacy criteria for DL systems includ-

ing neuron coverage [59] and k-multisection neuron coverage [51]

quantify testing coverage solely based on neuron values, irrespec-

tive of the added value of a neuron to the final decision. In other

words, a neuron might contribute to increasing the confidence for

classes other than the correct one, and this is not distinguished.

DeepImportance captures the actual contribution made by each

neuron to the decision which in shallow and deeper layers corre-

sponds to raw pixels and concrete features from the input domain,

respectively. For instance, Fig. 3 (left) shows the most important

pixels and Fig. 3 (right) shows the difference between the activation

values and the relevance scores for the same set of most impor-

tant neurons within the penultimate layer of a LeNet network [45].

DeepImportance exploits this understanding to guide testing to-

wards the most critical neurons with the strongest influence on the

behaviour of the DL system (cf. robustness results in Section 5.3).

Using relevance is also significantly different compared to sen-

sitivity analysis [55]. While sensitivity analysis cares about what
makes a labelled input (e.g., a dog) more/less to be classified as its
target label, relevance analysis investigates what actually makes
the input to be classified as that label. The sensitivity scores do not

really explain why an input has been predicted in a certain way, but

rather to which direction in the input space the output is most sen-

sitive. In contrast, relevance scores indicate which neurons/inputs

Importance-Driven Deep Learning System Testing ICSE ’20, May 23–29, 2020, Seoul, South Korea

are pivotal for the classification. Thus, they are a significantly more

informative and practicable measure for assessing and explaining

the composition about the decision made by the DL systems [11].

3.2 Important Neurons Clustering
Having established the important neurons that are core contributors

to the behaviour of the DL system, we are now ready to determine

regions within their value domain which are central to the DL

system execution. Since each neuron is responsible for perceiving

specific features within the input domain [46], we argue that for

inputs with similar features the activation values of those important

neurons are concentrated into specific regions within their value

domain. Informally, those regions form a pattern that captures the

activity of the most influential neurons of the DL system.

The purpose of clustering is threefold. First, compared to [51]

which partitions the value range of neuron activation values into k
buckets of equal width solely based on a randomly selected number

of buckets (i.e., k-multisection neuron coverage [51]), the clusters

generated by our approach correspond to semantically different fea-
tures of each neuron. Second, since the range of neuron activation

values ϕ(x ,n) could in principle be the entire set of real numbers

(R+ for ReLU activation functions), the cyclomatic complexity for

analysing the DL system is very large. Similar to techniques em-

ployed in [43, 51], clustering (bucketing in [43, 51]) enables to re-

duce dimensionality and computational cost, thus making tractable

to test the DL system (cf. Section 5). Finally, the identification of

clusters for those important neurons informs the allocation of test-

ing resources to ensure that the regions of those neurons are tested

sufficiently, thus increasing our confidence for the robust DL system

behaviour (cf. Section 5).

DeepImportance employs iterative unsupervised learning to clus-

ter the vector of activation values from the training set for each

important neuron and determine sets of values that can be grouped

together. The DeepImportance instantiation we present in this

research work (Section 5) employs k-means [33], an iterative clus-

tering method that produces k clusters which minimize the within-

class sum of squares. To this end, we segment the activation values

of each important neuron into groups (clusters) so that activation

values within the same group are more similar to other activation

values in the same group and dissimilar to those in other groups.

Determining the optimal number of clusters without analysing

the data is not a trivial problem [41]. We reinforce cluster extrac-

tion with the Silhouette index [62], thus supporting the automatic
identification of a neuron-specific optimal strategy for clustering

the activation values of each important neuron in Dm . Silhouette

is an internal clustering validation index that computes the good-

ness of a clustering structure without external information [49]. As

such, depending on each neuron’s activation values, the optimal

number of clusters is determined automatically and can be different

between the important neurons. Also, this strategy addresses the

weakness of k-means that requires to define the desired number of

clusters a priori. More formally, given the n-th important neuron,

n ∈ Dm , and the function C(t) indicating for each t ∈ T the cluster

assigned to ϕ(t ,n) within the n-th neuron’s clusters, the Silhouette

score for c ∈ N+ clusters is defined as follows

Algorithm 2 Important Neurons Cluster Extraction

1: function ClusterImportantNeurons(Dm, T, C)

2: Ψ← ∅ ▷ vector for clustered important neurons

3: for all n ∈ Dm do
4: Φn = (ϕ(t, n)), t ∈ T ▷ n-th neuron activation values

5: cmax

n = arg maxc∈C Score(Φn, Labels(Φn, c))
6: Ψn = Cluster(Φn, cmax

n) ▷ Ψn =
⋃

1≤i≤cmax

n
Ψin

7: Ψ = Ψ ∪ Ψn ▷ collect cluster vectors

8: return Ψ

Scn =
1

|T |

|T |∑
t=1

B(t) −A(t)

max(B(t),A(t))
(2)

where

A(t) =
1

1 − |C(t)|

∑
ϕ(u,n)∈{C(t)\ϕ(t,n)}

d(ϕ(u,n),ϕ(t ,n)) (3)

is the intra-cluster cohesion given by the average L1 distance of

activation value ϕ(t ,n) to all other values in the same cluster, and

B(t) = min

C ′,C(t)

1

|C ′ |

∑
ϕ(u,n)∈C ′

d(ϕ(u,n),ϕ(t ,n)) (4)

is the inter-cluster separation given by the average L1 distance be-
tween ϕ(t ,n) and activation values in its nearest neighbour cluster.

Maximising the Silhouette score gives the optimal clustering

strategy and correspondingly the optimal number of clusters for

the n-th important neuron. Therefore, the higher the score the

better the overall quality of the clustering result in terms of cluster

cohesion and cluster separation.

Algorithm 2 shows the high-level process underpinning Deep-

Importance for quantising the vector of neuron activation values

and extracting clusters for the most important neurons. Given as

inputs the training set T ⊆ X, the set of possible clusters C ⊂ N+
and the set of important neurons Dm (cf. Section 3.1), DeepImpor-

tance produces for each neuron n ∈ Dm the vector of activation

values Φn for all training inputs t ∈ T (line 4). Then, through an

iterative cluster analysis strategy using the Silhouette index [62],

we find the optimal clustering strategy for each important neuron’s

activation values (line 5). Next, we establish the clusters such that

Ψn =
⋃

1≤i≤cmax

n
Ψi
n , where Ψ

i
n is the vector containing the activa-

tion values for th i-th cluster (line 6). We stop when all important

neurons have been analysed.

Our approach is generic and can support different clustering

algorithms, including density-based, grid-based and hierarchical

clustering [41]. We emphasise, however, the importance of using an

iterative strategy that enables to determine the optimum number

of clusters. This is an important step that defines the granularity

of our importance-driven test adequacy criterion (cf. Section 3.3).

Investigating the applicability and effectiveness of other clustering

algorithms and clustering validity criteria is left for future work.

3.3 Importance-Driven Coverage
Given an input set Y , we can measure the degree to which it cov-
ers the clusters of important neurons, termed Importance-Driven
Coverage (IDC). Since important neurons are core contributors in

ICSE ’20, May 23–29, 2020, Seoul, South Korea Simos Gerasimou, Hasan Ferit Eniser, Alper Sen, and Alper Cakan

decision-making (cf. Section 3.1), it is significant to establish that

inputs triggering combinations of activation value clusters of those

neurons (cf. Section 3.2) have been covered adequately. Doing this,

enables to test the most influential neurons, thus increasing our

confidence in the correct operation of the DL system and reduc-

ing the risk for wrong decisions. The vector of important neurons

cluster combinations (INCC) is given by

INCC =
∏

n∈Dm

{Centroid(Ψi
n)|∀1 ≤ i ≤ |Ψn |} (5)

where the function Centroid(Ψi
n) measures the “centre of mass”

of the i-th cluster for the n-th important neuron.

We define Importance-Driven Coverage to be the ratio of INCC

covered by all y ∈ Y over the size of the INCC set. Compared to

all other elements in INCC, the j-th INNC element is covered if

there exists an input y for which the Euclidean distance between

the activation values of all important neurons n ∈ Dm and the cor-

responding neuron’s clusters centroids in j is minimised. Formally

IDC(Y) =
|{INCC(j)|∃y ∈ Y : ∀V i

n ∈ INCC(j) •mind(ϕ(y,n),V i
n }|

|INCC |
(6)

Achieving a high IDC score entails a systematically diverse in-

put set that exercises many combinations of important neurons

clusters. The covered combinations do not include only those ex-

ercised during training, whose activation values have been used

for establishing the important neurons, but also new and diverse

combinations. These new combinations could represent edge-case

behaviours for the DL system. The higher the IDC score, the more

INCC combinations have been triggered. Consequently, the more

confidence we should have in the DL system’s operation.

Another important characteristic of IDC is the layer-wise esti-
mation of coverage. By exploiting the combinations of important

neurons clusters given by (5), IDC measures how well multiple

inputs with semantically different features can trigger those combi-

nations. As such, IDC is significantly different to research which

focuses on counting how many neurons have at least once been

the most active neurons on a given layer [51, 59].

The granularity with which IDC is specified depends on the

number of important neuronsm (cf. Algorithm 1). Clearly, setting

m to the number of neurons within any layer results in an un-

manageable INCC number. For instance, assuming each of the 84

neurons of the penultimate layer of LeNet-5 [45] produces two

clusters (cf. Algorithm 6), the number of combinations given by

(5) is INCC = 1.9E + 25. Sincem is the only IDC hyper-parameter,

that affects the combinations of important neurons clusters (5), it

enables software engineers to experiment with different testing

strategies by specifying how coarse- or fine-grained the analysis

should be. In safety-critical systems, for instance, we might opt

for a fine-grained IDC coverage, hence a largem, aiming to cover

as many combinations as possible. We show in our experimental

evaluation that the higher the number ofm, the higher the number

of combinations and the more testing budget is required to increase

the IDC score (cf. Section 5). Investigating training-informed ways

for the automatic identification of the number of important neurons

is part of our future work.

4 IMPLEMENTATION
To ease the evaluation and adoption of DeepImportance and the

Importance-Driven Coverage from Section 3, we have implemented

a prototype tool on top of the open-source machine learning frame-

work Keras (v2.2.2) [21] with Tensorflow (v1.10.1) backend [6].

The open-source DeepImportance source code, the full experi-

mental results summarised in the following section, additional infor-

mation about DeepImportance and the case studies used for its eval-

uation are available at https://github.com/YYY/DeepImportance.

5 EVALUATION

5.1 Research Questions
Our experimental evaluation answers the research questions below.

RQ1 (Importance): Can neuron-importance analysis iden-
tify the most important neurons? We used this research ques-

tion to establish if the importance-based algorithm underpinning

DeepImportance for the identification of important neurons com-

fortably outperforms a strategy that selects such neurons randomly.

RQ2 (Diversity): Can DeepImportance inform the selection
of a diverse test set? We investigate whether software engineers

can employ the Importance-Driven Coverage to generate a diverse

test set that comprises semantically different test inputs.

RQ3 (Effectiveness):Howeffective isDeepImportance in iden-
tifying misbehaviours in DL systems?With this research ques-

tion, we examine the effectiveness of DeepImportance to detect

adversarial inputs carefully crafted by state-of-the-art adversar-

ial generation techniques [18, 29, 44, 58]. These adversarial inputs

should be semantically different than those encountered before,

thus increasing the Importance-Driven Coverage metric.

RQ4 (Correlation): How is DeepImportance correlated with
existing coverage criteria for DL systems?We analyse the rela-

tionship in behaviour between DeepImportance and state-of-the-art

coverage criteria for DL systems including neuron coverage [59],

k-multisection neuron coverage [51] and surprise adequacy [43].

RQ5 (Layer Sensitivity): How is the behaviour of DeepIm-
portance affected by the selection of specific neuron layers?
Given the layer-wise capability of DeepImportance, we investigate

Table 1: Datasets and DL Systems used in our experiments.

Dataset DL System # Params Performance

MNIST [45]

LeNet-1 7206 98.33%

LeNet-4 69362 98.59%

LeNet-5 107786 98.96%

CIFAR-10 [1]

A 20 layer ConvNet

with max-pooling

and dropout layers.

952234 77.68%

Udacity self-driving

car challenge[2]

Dave-2 archite-

cture from Nvidia

2116983 0.096

(MSE)

The column ‘Params’ shows the number of trainable parameters for each

DL model. The column ‘Performance’ shows the accuracy (for for MNIST

and CIFAR-10 datasets) and mean squared error (for the Udacity dataset).

https://github.com/YYY/DeepImportance

Importance-Driven Deep Learning System Testing ICSE ’20, May 23–29, 2020, Seoul, South Korea

whether performing the analysis on shallow or deeper layers has

any impact on the Importance-Driven Coverage metric.

5.2 Experimental Setup
Datasets and DL Systems. Table 1 shows the datasets and DL

systems used in our experimental evaluation. We evaluate DeepIm-

portance on three popular publicly-available datasets. MNIST [45]

is a handwritten digit dataset with 60,000 training inputs and 10,000

testing inputs; each input is a 28x28 pixel image with a class label

from 0 to 9. CIFAR-10 [1] is an image dataset with 50,000 training

inputs and 10,000 testing inputs; each input is a 32x32 image in

ten different classes (e.g., dog, bird, car). The Udacity self-driving

car challenge dataset [2] comprises images captured by a camera

mounted behind the windshield of a moving car and supported

by the steering wheel angle applied by the human driver for each

image. Since this is the ground truth, the aim for a DL system is

to predict the steering wheel angle; hence, the DL system’s accu-

racy is measured using Mean Squared Error (MSE) between ground

truth and predicted steering angles. The Udacity dataset has 101,396

training and 5,614 testing inputs.

To enable a systematic and comprehensive assessment of Deep-

Importance, we chose DL systems used in related research [43, 51,

59, 75] with different architecture (i.e., number of layers and layer

types - fully-connected, convolutional, dropout, max- pooling), com-

plexity (i.e., number of trainable parameters) and performance. For

MNIST, we study three DL systems from the Le-Net family [45], i.e.,

LeNet-1, LeNet-4 and LeNet-5, trained to achieve over 98% accuracy

on the provided test set (cf. Table 1). For CIFAR-10, we employ the

prototype model in [1] which is a 20 layer convolutional neural

network (CNN) trained to achieve 77.68% accuracy. For the Udac-

ity self-driving car challenge, we used the pre-trained Dave-2 [13]

self-driving car DL system from Nvidia. Dave-2 comprises nine

layers including five convolutional layers and its MSE is 0.096. All

experiments were run on an Ubuntu server with 16 GB memory

and Intel Xeon E5-2698 2.20GHz.

Coverage Criteria Configurations.We facilitate a thorough and

unbiased evaluation of DeepImportance by comparing it against

state-of-the-art coverage criteria for DL systems. To this end, we

used DeepXplore’s [59] neuron coverage (NC); DeepGauge’s [51]

k-multisection neuron coverage (KMNC), neuron boundary cover-

age (NBC), strong neuron activation coverage (SNAC) and top-k

neuron coverage (TKNC); and Surprise’s Adequacy [43] distance-

based (DSC) and likelihood-based surprise coverage (LSC). For each

criterion, we use the hyper-parameters recommended in its original

research. In particular, we set neuron activation threshold to 0.75

in NC, and k = 3 and k = 1000 in TKNC and KMNC, respectively.

For NBC and SNAC we set as lower (upper) bound the minimum

(maximum) activation value encountered in the training set. The

upper bound for DSC and LSC is fixed to 2 and 2000, respectively,

and the number of buckets is set to 1000. Concerning DeepImpor-

tance, unless otherwise stated (e.g., RQ5), we always consider the

penultimate layer as the subject layer and the number of important

neuronsm ∈ {6, 8, 10, 12}. When running the experiments, we set

an upper bound of execution time to three hours. If a criterion ex-

ceeds this threshold, we terminate its execution and report that no

results have been generated. We facilitate the replication of our find-

ings by making available the implementation of all those metrics on

the project webpage at https://github.com/YYY/DeepImportance.

Synthetic Inputs and Adversarial Examples.We use both syn-

thetic inputs and adversarial examples to evaluate DeepImpor-

tance. Synthetic inputs are obtained by applying small perturba-

tions on the original inputs through Gaussian-like injected white

noise [9, 10]. Adversarial examples are carefully crafted perturba-

tions to inputs, which albeit being imperceptible to the human,

lead a DL system to make an incorrect decision [29]. Adversarial

examples are typically used to assess the robustness of DL sys-

tems. We employ four widely studied attack strategies to evaluate

DeepImportance Fast Gradient Sign Method (FGSM) [29], Basic

Iterative Method (BIM) [44], Jacobian-based Saliency Map Attack

(JSMA) [58], and Carlini&Wagner (C&W) [19]. Our implementation

of these strategies is based on Cleverhans [57], a Python library for

benchmarking DL systems against adversarial examples.

5.3 Results and Discussion
RQ1 (Importance). Since identifying the most important neurons

within a subject layer is a key principle of DeepImportance, we

assess if the neurons identified during neuron-importance analysis

(cf. Algorithm 1) have indeed a significant role in decision-making.

To answer this research question, we employ DeepImportance to

find them = 6 andm = 8 most important neurons for the MNIST

and Cifar-10, and Udacity datasets, respectively. We select an equiv-

alent number of neurons using a random-selection strategy. Next,

we employed the approach from [11], used in the explainable AI
area to highlight input parts responsible for a decision, and chose

inputs (pixels) whose score is above the 90th percentile (i.e., among

the top 10%). We then perturbed those pixels, setting their value

to zero if their score is above a predefined threshold of 0.5 (i.e.,

they are relevant) and to one otherwise. We limit the magnitude of

perturbation to at most 10% of the total number of pixels, aiming to

keep the perturbed input close to the original. Finally, we measured

the L2 (Euclidean) distance between the activation values of the

original input and the perturbed input both for DeepImportance

and random; a higher distance signifies a more significant change.

Figure 4 and Table 2 show boxplots and the average delta (stan-

dard deviation in parenthesis) of activation values for the entire

testing set (i.e., for all classes) of each dataset, respectively. The

reported results are over five independent runs, thus mitigating the

risk that they have been obtained by chance. Clearly, the activation

values distance for neurons selected by DeepImportance is higher

than the equivalent distance for randomly-selected neurons. The

difference becomes more evident in LeNet-4 and LeNet-5 that have

120 and 84 neurons in the penultimate layer, respectively, with the

distance using DeepImportance exceeding 4.18, whereas the dis-

tance using random is between 0.93 and 1.09. Similar observations

hold for Cifar-10 (128 feature maps), while the difference is less

clear for LeNet-1 (12 feature maps). These observations also provide

a useful indication for the number of important neuronsm with

regards to the total number of neurons in the subject layer.

We conclude that DeepImportance can detect the most
important neurons of a DL system and those neurons are
more sensitive to changes in relevant pixels of a given input.

https://github.com/YYY/DeepImportance

ICSE ’20, May 23–29, 2020, Seoul, South Korea Simos Gerasimou, Hasan Ferit Eniser, Alper Sen, and Alper Cakan

Table 2: Average (std dev.) L2 distance of activation values
for neurons selected randomly and using DeepImportance
on MNIST (LeNet-1|4|5), Cifar-10 and Udacity (Dave-2).
Strategy LeNet-1 LeNet-4 LeNet-5 Cifar-10 Dave-2

Random 0.07(±0.05) 1.09(±0.49) 0.93 (±0.51) 47.22(±42.8) 1.16(±0.75)

DeepImportance 0.28(±0.13) 4.79(±1.35) 4.18(±1.61) 112.03(±70.3) 2.83(±1.92)

Figure 4: Boxplots comparing activation values distance of
important and randomly-selected neurons between original
inputs and those with their most relevant pixels perturbed.

RQ2 (Diversity). A useful coverage criterion for DL systems en-

tails the ability to assign higher coverage for test sets that comprise

semantically diverse test inputs [77]. This is a significant asset for
evaluating the ability of a DL system to learn semantically mean-
ingful features for the decision-making task rather than memoising
or learning irrelevant features (i.e., learn to make decisions by ex-

ploiting unintended similarity patterns in the test set) [8].

To answer this research question, wemeasured the IDCmetric (6)

given the original test setUO of each dataset and corresponding DL

systems (cf. Section 5.2) for multiple values of important neurons

m ∈ {6, 8, 10, 12}. Then, for each test set we created two ‘perturbed’

versions. The former is a semantically-diverse set UDI that consists
of inputs whose top 2% pixels (identified similarly as in RQ1), are

perturbed by applying small perturbations to the original inputs

through Gaussian white noise [9, 10]. The number of perturbed

pixels are 15 for MNIST, 20 for Cifar-10 and 200 for Udacity. The

other is a numerically-diverse setUS that consists of synthetic inputs

generated also by injecting Gaussian white noise to an equivalent

number of randomly-selected pixels of original inputs. For example,

Fig. 5 shows an original input from the Udacity dataset (left), the

perturbed input from the US set (centre) and the perturbed input

within theUDI set (right). The modified pixels in the image on the

right are the top 2% pixels that lead the car to steer the wheel to

the left (ground truth). We add both of these perturbed test sets

to the original set and obtain the test sets UO+DI and UO+S and

measured their IDC metric.

Table 3 (top rows with IDC prefix) shows the average IDC value

for different DL systems and number of important neuronsm. As

before, we reduce randomisation bias by reporting results over five

independent runs. For all datasets and DL systems, the IDC value

for the semantically-diverse set (columnUO+DI) is always higher
than that for the numerically-diverse set (UO+S column). In fact,

the difference is more clear for the more complex DL systems, e.g.,

LeNet-4 (+1% on average) and Dave-2 (+1.5% on average). This be-

haviour is also reinforced by a corresponding reduction in accuracy.

In particular, in all instances the prediction confidence for theUO+S
set is always higher than that of theUO+DI set. These observations

Figure 5: Example image from the Udacity dataset showing
the original input (left), an input from theUS set with Gauss-
ian noise in random pixels (centre), and an input from the
UDI set with Gaussian noise to relevant pixels (right).

signify that IDC is more sensitive to input features that are im-

portant to the decision-making task instead of randomly-selected

features.

Another interesting observation from Table 3 is that due to the

INCC number (5), the IDC value becomes lower as the number of

important neuronsm increases. Considering LeNet-4, for instance,

IDC decreases from 65.8% (64.2%) to 18.1%(16.9%) forUO+DI (UO+S)
when m = 6 and m = 10, respectively. For these experiments,

the number of clusters of important neurons extracted from Al-

gorithm 2 is between two and four. This is expected since the

combinations of important neurons clusters (INCC) increases expo-

nentially asm increases (e.g., [64, 486] form = 6 and [4096, 69984]

form = 12). Software engineers can use this information to adjust

the available budget and effort needed to test their DL systems.

For completeness, we ran similar experiments using state-of-

the-art coverage criteria for DL systems (cf. Section 5.2). Table 3

(bottom) shows their coverage results. Except from LeNet-1, i.e.,

the DL system with the smallest complexity, the coverage results

for all other DL systems are smaller for the semantically-diverse set
UDI compared to the numerically-diverse setUS . In contrast to IDC,

which is sensitive to perturbations to relevant input features, these

criteria are also sensitive to perturbations to random input features.

We conclude that DeepImportance with its IDC coverage
criterion can support software engineers to create a diverse
test set that comprises semantically different test inputs.
RQ3 (Effectiveness). Building on research in traditional software

testing, effective coverage criteria for DL systems should be capable

of identifying misbehaviours (i.e., failing test cases) [35]. Coverage

criteria satisfying this property have good fault-detection abilities.

Thus, they can be used to evaluate the adequacy of a test set and

provide a quantifiable measurement of confidence in testing [60].

To assess the effectiveness of DeepImportance, we compared the

IDC values between an unmodified test set UO and sets enhanced

with perturbed inputs using white noise and adversarial inputs

carefully crafted using state-of-the-art adversarial generation tech-

niques. More specifically, for each dataset and each DL system,

we generated four adversarial test sets using FGSM [29], BIM [44],

JSMA [58] and CW [18] and another numerically-diverse test US
via Gaussian white noise with standard deviation=0.3 (as in RQ1).

Unlike adversarial inputs, the set US is correctly classified with

accuracy 97.4% on average. We extended the original set with each

of these synthesised test sets and measured their IDC values for

the corresponding DL systems.

Importance-Driven Deep Learning System Testing ICSE ’20, May 23–29, 2020, Seoul, South Korea

Table 3: Average (std dev) coverage results for Importance-DrivenCoverage criterion (m ∈ {6,8,10,12}) and other coverage criteria
forMNIST,Cifar-10 andUdacity datasets; the highest value betweenUS andUDI is boldfaced (T/O: timeout, N/A: not applicable).

LeNet-1 (MNIST) LeNet-4 (MNIST) LeNet-5 (MNIST) Cifar-10 Dave-2 (Udacity)

UO UO+S UO+DI UO UO+S UO+DI UO UO+S UO+DI UO UO+S UO+DI UO UO+S UO+DI

IDC6 34.6%(±2.2) 38.0%(±2.5) 38.8%(±2.4) 58.8%(±2.7) 64.2%(±2.7) 65.8%(±2.7) 47.0%(±3.0) 51.1%(±2.9) 52.1%(±2.8) 29.4%(±1.3) 37.9%(±1.5) 39.0%(±1.4) 19.1%(±0.7) 26.0%(±1.1) 28.5%(±1.1)

IDC8 14.1%(±0.9) 16.5%(±1.1) 17.5%(±1.2) 26.9%(±1.1) 31.8%(±1.4) 32.9%(±1.5) 28.0%(±1.2) 33.7%(±1.7) 34.5%(±1.7) 11.1%(±0.6) 15.5%(±0.8) 16.6%(±0.9) 7.8%(±0.3) 10.0%(±0.5) 11.6%(±0.2)

IDC10 5.5%(±0.3) 6.6%(±0.4) 7.0%(±0.4) 13.5%(±0.8) 16.9%(±1.0) 18.1%(±1.0) 9.5%(±0.4) 12.2%(±0.5) 13.1%(±0.6) 5.1%(±0.3) 7.4%(±0.4) 8.1%(±0.4) 3.3%(±0) 4.2%(±0.1) 4.9%(±0.2)

IDC12 2.1%(±0.1) 2.6%(±0.1) 2.9%(±0.2) 4.5%(±0.2) 6.3%(±0.3) 6.9%(±0.4) 4.4%(±0.2) 6.2%(±0.4) 6.8%(±0.4) 2.0%(±0.2) 3.2%(±0.3) 3.7%(±0.3) 1.4%(±0) 2.0%(±0) 2.3%(±0)

NC 17.3%(±0.5) 20.7%(±0.3) 20.5%(±0.3) 37.9%(±0.7) 44.1%(±0.8) 43.4%(±0.8) 44.2%(±0.9) 51.7%(±0.9) 50.6%(±0.9) 20.2%(±0.3) 35.2%(±0.2) 34.5%(±0.2) 51.6%(±1.8) 66.7%(±0.2) 64.7%(±0.3)

KMNC 35.1%(±0.3) 51.3%(±0.4) 48.2%(±0.4) 34.9%(±0.2) 54.4%(±0.3) 50.8%(±0.3) 32.5%(±0.2) 52.0%(±0.3) 48.4%(±0.2) 36.8%(±0) 43.5%(±0) 41.5%(±0) 30.2%(±0) 50.9%(±0.1) 46.6%(±0.1)

NBC 16.7%(±1.3) 22.5%(±1.4) 21.5%(±1.3) 9.3%(±0.6) 12.3%(±0.6) 11.7%(±0.6) 9.3%(±0.5) 12.1%(±0.6) 11.5%(±0.5) 9.4%(±0) 9.5%(±0) 9.5%(±0) 0.8%(±0.1) 24.7%(±0.5) 21.4%(±0.7)

SNAC 10.9%(±0.6) 14.6%(±0.6) 13.8%(±0.6) 12.0%(±0.5) 15.0%(±0.6) 14.3%(±0.6) 14.4%(±0.5) 18.1%(±0.6) 17.3%(±0.6) 8.8%(±0) 8.9%(±0) 8.9%(±0) 1.5%(±0.2) 46.9%(±0.9) 41.0%(±1.4)

TKNC 100.0%(±0.0) 100.0%(±0.0) 100.0%(±0.0) 91.3%(±0.0) 91.7%(±0.2) 91.6%(±0.2) 88.8%(±0.0) 89.2%(±0.0) 89.1%(±0.1) 15.2%(±0.0) 17.0%(±0.1) 16.6%(±0.1) 40.8%(±0.1) 52.1%(±0.2) 50.0%(±0.2)

DSC 86.3%(±0.0) 91.7%(±0.3) 92.3%(±0.5) 60.2%(±0.3) 66.8%(±0.1) 66.7%(±0.2) 54.9%(±0.0) 60.9%(±0.2) 61.4%(±0.2) TO TO TO N/A N/A N/A

LSC 2.8%(±0.1) 3.3%(±0.1) 3.2% (±0.1) 14.6%(±0.1) 16.7%(±0.1) 16.5%(±0.2) % 13.8(±0.0) 16.5%(±0.1) 16.8%(±0.2) TO TO TO 4.2%(±0.1) 4.6%(±0.1) 4.7%(±0.1)

Table 4: Effectiveness of coverage metrics. (‘+Y’ means
adding Y-based adversarial inputs to the original test setUO)

IDC6 IDC8 NC KMNC NBC SNAC TKNC LSA DSA

UO . 34.6% 14.1% 23.8% 62.7% 15.1% 18.6% 100% 2.6% 86.2%

UO+S 36.3% 16.1% 23.8% 70.8% 25.0% 18.6% 100% 4.0% 87.6%

+FGSM 42.3% 20.9% 23.8% 81.1% 46.5% 55.8% 100% 13.7% 85.3%

+BIM 43.2% 20.8% 23.8% 71.6% 45.3% 53.4% 100% 9.6% 86.8%

+JSMA 41.0% 19.0% 23.8% 80.5% 31.3% 37.2% 100% 13.9% 86.9%

Le
N
et
-1

+CW 37.9% 17.0% 23.8% 64.9% 16.6% 19.0% 100% 5.2% 86.2%

UO . 58.8% 27.0% 63.7% 69.2% 7.9% 12.3% 91.3% 14.4% 61.5%

UO+S 62.0% 29.1% 64.4% 72.6% 10.8% 12.3% 91.3% 10.9% 67.0%

+FGSM 65.6% 33.4% 64.4% 79.4% 38.8 % 65.4% 93.4% 39.3% 83.7%

+BIM 66.5% 33.4% 79.3% 74.2% 41.0% 69.7% 92.7% 45.1% 78.8%

+JSMA 64.7% 32.2% 63.7% 76.8% 14.3% 20.8% 91.3% 64.4% 88.8%

Le
N
et
-4

+CW 62.8% 31.0% 63.7% 70.5% 7.9% 12.3% 91.3% 14.4% 60.1

UO . 47.0% 28.0% 75.3% 69.2% 7.6% 13.8% 88.8% 13.8% 54.9%

UO+S 48.1% 29.1% 75.3% 71.5% 10.0% 13.8% 88.8% 10.8% 57.3%

+FGSM 51.6% 32.3% 75.3% 79.6% 40.7% 71.3% 89.1% 40.4% 83.5%

+BIM 51.6% 32.3% 84.7% 76.1% 46.2% 83.2% 89.1% 42.4% 74.3%

+JSMA 49.8% 32.3% 75.3% 74.3% 12.8% 21.1% 89.1% 61.0% 85.7%

Le
N
et
-5

+CW 49.8% 31.8% 75.3% 70.6% 7.6% 13.8% 88.8% 15.2% 61.2%

Table 4 (columns IDC6 and IDC8) shows the average IDC cov-

erage results for m ∈ {6, 8} across the six enhanced test sets of

each DL system. Compared to the original test set UO , there is a
considerable increase in the IDC result for the enhanced test sets

for all DL systems. As expected, the IDC result form = 6 (IDC6)

is higher than that for m = 8 (IDC8) as the number of combina-

tions INCC (5) grows exponentially with the number of important

neurons. The increase is more significant in test sets involving ad-

versarial inputs than that with Gaussian-like noisy inputs (UO+S) .

Consequently, adversarial inputs lead to higher coverage for our

IDC criterion, thus signifying the sensitivity to adversarial inputs

and its fault detection abilities (conforming to testing criteria in

traditional software testing).

We conclude that IDC is sensitive to adversarial inputs
and is effective in detecting misbehaviours in test sets with
inputs semantically different than those encountered before.
RQ4 (Correlation).We report results on how state-of-the-art cov-

erage criteria behave across the six tests sets for MNIST in Table 4.

Similarly to IDC, most of the criteria, i.e., KMNC, NBC, SNAC, LSA,

DSA, experience a similar increase to their coverage results when

evaluated using test sets augmented with adversarial inputs (e.g.,

FGSM, BIM, JSMA, CW). As such, IDC is consistent with criteria

based on input surprise (e.g., LSA, DSA) and aggregation of neuron

property values (e.g., KMNC, NC). However, while the IDC result

for the test set UO+S is always lower than that with adversarial

inputs (with the exception of BIM for IDC8 on LeNet-4), there are

several instances in whichUO+S produces higher results than the

adversarial-augmented sets (e.g., KMNC, NBC DSA for LeNet-1).

This is an interesting finding that requires further investigation.

Another interesting observation is that NC and TKNC are in-

sensitive to either Gaussian-like noisy inputs or adversarial inputs,

irrespective of the employed adversarial technique. The results for

NC are not surprising and conform to results reported in existing

research [43, 51]. Nevertheless, the plateau shown in TKNC is par-

ticularly important since it is a layer-wise coverage criterion, like

IDC. In contrast to IDC, TKNC measures how many neurons have

at least once been the most active k neurons on a target (or all) layer.

Considering these results, IDC is more informative than TKNC.

In general, we conclude that IDC shows a similar behaviour
to state-of-the-art coverage criteria for DL systems; hence,
there is a positive correlation between them.
RQ5 (Layer Sensitivity). Since DeepImportance operates layer-

wise, we investigated how IDC varies for different layers of a DL

system. Table 5 shows the coverage results form ∈ {4, 6} across
layers, ordered by their depth for the three DL systems, using the

original test setUO and that augmented with semantically-diverse

inputs UO+DI . First, we observe that IDC value increases when

ICSE ’20, May 23–29, 2020, Seoul, South Korea Simos Gerasimou, Hasan Ferit Eniser, Alper Sen, and Alper Cakan

Table 5: IDC coverage results for different layers with the
best coverage between theUO andUO+DI sets typeset in bold.

LeNet1 (IDC4) LeNet4 (IDC4) LeNet5 (IDC6)

UO UO+DI UO UO+DI UO UO+DI

Conv1 35.3% 38.3% 33.9% 35.9% 12.5% 15.6%
Conv2 76.2% 80.8% 81.6% 84.0% 31.0% 36.6%
FC1 - - 86.0% 90.0% 37.0% 44.2%
FC2 - - - - 35.8% 43.4%
Conv*: Convolutional layer; FC*: Fully-connected layer

LeNet-4 has only one FC layer; LeNet-1 has none.

the analysis is performed on deeper instead of shallow layers. For

instance, in LeNet-4 and theUO test set, IDC increases from 33.9% in

Conv1 to 81.6% in Conv2 until it reaches 86.0% in FC1. We consider

this observation as a confirmation of the ability of DL systems to

extract more meaningful features in deeper layers.

Furthermore, IDC ismore sensitive to the test set with semantically-

diverse inputs (UO+DI). In fact, we can observe a steady increase

in the delta in IDC values betweenUO+ID andUO for more deeper

layers. For Lenet-5, for instance, the IDC delta grows from 3.1%

in Conv1 to 5.6% and 7.2% in Conv2 and FC1, respectively, until it

reaches 7.6% for FC2. This behaviour persists despite the slight de-

crease in IDC value between FC1 and FC2 for bothUO andUO+DI .
This observation reasserts our findings in RQ2 (cf. Table 3).

Overall, the chosen target layer affects the result of IDC.
Since the penultimate layer is responsible to understand se-
mantically-important high-level features, we argue it is a
suitable choice to assess the adequacy of a test set using IDC.

5.4 Threats to Validity
We mitigate construct validity threats that could occur due to

simplifications in the adopted experimental methodology using

widely-studied datasets, i.e., MNIST [45], Cifar-10 [1] and Udacity

self-driving car challenge [2]. Also, we employed publicly-available

DL systems including LeNet [45] and Dave-2 [13] that have different

architectures and achieve competitive performance results [28].

Also, we mitigate threats related to the identification of important

neurons (Algorithm 1) by adapting techniques from the explainable
AI area for identifying input parts responsible for a decision [55].

We limit internal validity threats that could introduce bias

when establishing the causality between our findings and the ex-

perimental study by designing independent research questions to

evaluate DeepImportance. Hence, we illustrate the performance of

DeepImportance in RQ1 and RQ2 for different values of important

neuronsm ∈ {6, 8, 10, 12} and by augmenting the original test sets

with both numerically-diverse and semantically-diverse perturbed
inputs. The granularity of IDC increases exponentially with higher

m values, thus requiring a substantially larger number of inputs

to be satisfied. We also assessed the effectiveness of IDC to detect

adversarial examples and confirmed its positive correlation with

state-of-the-art coverage criteria for DL systems in RQ3 and RQ4,

respectively. Furthermore, we investigate the effect of layer selec-

tion on IDC result in a structured manner in RQ5. Finally, when

randomness can play a factor (e.g., in RQ1 and RQ2), we reduce

threats that the observations might have been obtained accidentally

by reporting results over five independent runs per experiment.

We mitigate external validity threats that could affect the gen-

eralisation of IDC by developing DeepImportance on top of the

open-source frameworks Keras and Tensorflowwhich enable white-

box DNN analysis. We further reduce the risk that DeepImportance

might be difficult to use in practice by validating it against several

DL systems trained on three popular datasets (MNIST [45], Cifar-

10 [1], Udacity [2]). However, more experiments are needed to

assess the performance of DeepImportance using other techniques

to identify the important neurons (e.g., DeepLift [66]), to extract

clusters within important neurons (e.g., hierarchical clustering) and

to validate the cohesion and separation of those clusters. These

experiments are part of our future work.

6 RELATEDWORK
Trustworthiness issues in DL systems urged researchers to develop

techniques that enable their effective and systematic testing [47, 77].

Existing research in the area adapts testing techniques and criteria

from traditional software engineering (e.g., [24, 50, 52, 70]) while

other proposes novel test adequacy criteria [35]. For instance, Deep-

Xplore [59] introduces neuron coverage for measuring the ratio

of neurons whose activation values are above a predefined thresh-

old. Similarly, DeepGauge [51] introduces a family of adequacy

criteria based on a more detailed analysis of neuron activation val-

ues. DeepCT [50] proposes a combinatorial testing approach, while

DeepCover [69] adapts MC/DC from traditional software testing

and defines adequacy criteria that investigate the changes of succes-

sive pairs of layers. Recent research also proposes testing criteria

and techniques driven by symbolic execution [31], coverage guided

fuzzing [56, 76] and metamorphic transformations [72], while other

research explores test prioritization [16] and fault localisation [24].

Although the objective of existing research is to guide testing

of DL systems, eventually improving their accuracy and robust-

ness, the majority concerns testing adequacy based on neuron-level

properties. In contrast, DeepImportance, driven by the fact that the

behaviour of a DL system is determined layer-wise [28], proposes

a layer-wise and importance-based test adequacy criterion. In our

experimental study (cf. Section 5), we compare the performance of

IDC against other layer-wise criteria (e.g., TKNC) and show that

IDC is more informative. The recent research on using surprise ad-

equacy to guide testing [43] is complementary to DeepImportance.

A closely-related research branch is the provision of guarantees

for the trustworthinesss of DL systems via formal verification [36].

AI
2
[26] uses abstract interpretation to verify safety properties,

while [61] employs abstraction refinement. Other research uses

SMT solvers to identify safe regions in the input space and thus es-

tablish the robustness of DL systems [30, 40]. Instead of SMT solvers,

ReluVal [74] finds bounds for security properties using interval

arithmetic. Finally, DLV [75] verifies local robustness based on

user-defined manipulations. DeepImportance identifies important

neurons using techniques from the explainable AI area (e.g., [11]);
thus, it is orthogonal to existing research on DL system verification.

Test adequacy is a widely-studied topic within traditional soft-

ware engineering [60]. Due to space limitation, we cannot provide

a comprehensive review of relevant research. Instead, we refer

interested readers to related surveys and books [7, 32, 37, 54].

Importance-Driven Deep Learning System Testing ICSE ’20, May 23–29, 2020, Seoul, South Korea

7 CONCLUSION
Ensuring the trustworthiness of DL systems requires their thor-

ough and systematic testing. DeepImportance is a systematic test-

ing methodology reinforced by an Importance-Driven (IDC) test

adequacy criterion for DL systems. DeepImportance analyses the

internal neuron behaviour to create a layer-wise functional under-
standing and automatically establish a finite set of clusters that rep-

resent the behaviour of the most important neurons to an adequate

level of granularity. The Importance-Driven adequacy criterion

measures the adequacy of a test set as the ratio of combinations

of important neurons clusters covered by the set. Our experimen-

tal evaluation shows that IDC achieves higher results for test sets

with semantically-diverse inputs. IDC is also sensitive to adversarial

inputs and, thus, effective in detecting misbehaviour in test sets.

Our future work involves (1) investigating methods to automati-

cally determine the number of important neurons; (2) improving

the robustness of IDC; (3) evaluating DeepImportance on other

DL systems and datasets; and (4) examining how DeepImportance

results can be incorporated into safety cases [17, 42].

ACKNOWLEDGEMENTS
This research was supported in part by Semiconductor Research

Corporation under task 2020-AH-2970.

REFERENCES
[1] [n. d.]. CIFAR10 Model in Keras. https://keras.io/examples/cifar10_cnn/. ([n. d.]).

Accessed: 13-05-2019.

[2] [n. d.]. The udacity open source self-driving car project. ([n. d.]). https://github.

com/udacity/self-driving-car

[3] 2016 (accessed April 30, 2019). AGoogle self-driving car caused a crash for the first

time. (2016 (accessed April 30, 2019)). https://www.wired.com/2016/02/googles-

self-driving-car-may-caused-first-crash

[4] 2018 (accessed April 30, 2019. National Transportation Safety Board.Preliminary

report: Highway HWY18MH010. (2018 (accessed April 30, 2019). https://www.

ntsb.gov/investigations/AccidentReports/Reports/HWY18MH010-prelim.pdf

[5] 2019 (accessed April 30, 2019. Death of Elaine Herzberg. (2019 (accessed April

30, 2019). https://en.wikipedia.org/wiki/Death_of_Elaine_Herzberg

[6] Martin Abadi, Paul Barham, Jianmin Chen, et al. 2016. TensorFlow: A system for

large-scale machine learning. In 12th USENIX Symposium on Operating Systems
Design and Implementation. 265–283.

[7] Paul Ammann and Jeff Offutt. 2016. Introduction to software testing. Cambridge

University Press.

[8] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and

Dan Mané. 2016. Concrete problems in AI safety. arXiv preprint arXiv:1606.06565
(2016).

[9] Guozhong An. 1996. The effects of adding noise during backpropagation training

on a generalization performance. Neural computation 8, 3 (1996), 643–674.

[10] Devansh Arpit, Stanisław Jastrzębski, Nicolas Ballas, David Krueger, Emmanuel

Bengio, Maxinder S Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville,

Yoshua Bengio, et al. 2017. A closer look at memorization in deep networks. In

Proceedings of the 34th International Conference on Machine Learning-Volume 70.
JMLR. org, 233–242.

[11] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen,

Klaus-Robert Müller, and Wojciech Samek. 2015. On pixel-wise explanations for

non-linear classifier decisions by layer-wise relevance propagation. PloS one 10,
7 (2015), e0130140.

[12] Yoshua Bengio, Aaron Courville, and Pascal Vincent. 2013. Representation

learning: A review and new perspectives. IEEE transactions on pattern analysis
and machine intelligence 35, 8 (2013), 1798–1828.

[13] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, et al.

2016. End to End Learning for Self-Driving Cars. (2016).

[14] Markus Borg, Cristofer Englund, Krzysztof Wnuk, Boris Duran, Christoffer

Levandowski, Shenjian Gao, Yanwen Tan, Henrik Kaijser, Henrik Lönn, and

Jonas Törnqvist. 2018. Safely entering the deep: A review of verification and

validation for machine learning and a challenge elicitation in the automotive

industry. arXiv preprint arXiv:1812.05389 (2018).
[15] Simon Burton, Lydia Gauerhof, and Christian Heinzemann. 2017. Making the

Case for Safety of Machine Learning in Highly Automated Driving. In Computer

Safety, Reliability, and Security. 5–16.
[16] Taejoon Byun, Vaibhav Sharma, Abhishek Vijayakumar, Sanjai Rayadurgam, and

Darren Cofer. 2019. Input Prioritization for Testing Neural Networks. arXiv
preprint arXiv:1901.03768 (2019).

[17] Radu Calinescu, Danny Weyns, Simos Gerasimou, Muhammad Usman Iftikhar,

Ibrahim Habli, and Tim Kelly. 2018. Engineering trustworthy self-adaptive

softwarewith dynamic assurance cases. IEEE Transactions on Software Engineering
44, 11 (2018), 1039–1069.

[18] Nicholas Carlini and David Wagner. 2017. Adversarial examples are not eas-

ily detected: Bypassing ten detection methods. In Proceedings of the 10th ACM
Workshop on Artificial Intelligence and Security. ACM, 3–14.

[19] Nicholas Carlini and David Wagner. 2017. Towards evaluating the robustness of

neural networks. In IEEE Symposium on Security and Privacy (S&P). 39–57.
[20] Jianbo Chen, Le Song, Martin J Wainwright, and Michael I Jordan. 2018. Learning

to explain: An information-theoretic perspective on model interpretation. arXiv
preprint arXiv:1802.07814 (2018).

[21] François Chollet et al. 2015. Keras. https://keras.io. (2015).

[22] Dan Cireşan, Ueli Meier, and Jürgen Schmidhuber. 2012. Multi-column Deep

Neural Networks for Image Classification. In Conference on Computer Vision and
Pattern Recognition (CVPR). 3642–3649.

[23] Z. Cui, F. Xue, X. Cai, Y. Cao, et al. 2018. Detection of Malicious Code Variants

Based on Deep Learning. IEEE Transactions on Industrial Informatics 14, 7 (2018),
3187–3196.

[24] Hasan Ferit Eniser, Simos Gerasimou, and Alper Sen. 2019. DeepFault: Fault Lo-

calization for Deep Neural Networks. In International Conference on Fundamental
Approaches to Software Engineering. Springer, 171–191.

[25] International Organization for Standardization. 2011. ISO 26262: Road Vehicles -

Functional Safety. (2011).

[26] T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, et al. 2018. AI2: Safety and

Robustness Certification of Neural Networks with Abstract Interpretation. In

IEEE Symposium on Security and Privacy (S&P). 1–16.
[27] John B Goodenough and Susan L Gerhart. 1975. Toward a theory of test data

selection. IEEE Transactions on software Engineering 2 (1975), 156–173.

[28] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT

Press. http://www.deeplearningbook.org.

[29] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and

Harnessing Adversarial Examples. In International Conference on Learning Repre-
sentations (ICLR).

[30] Divya Gopinath, Guy Katz, Corina S Pasareanu, and Clark Barrett. 2017. DeepSafe:

A data-driven approach for checking adversarial robustness in neural networks.

arXiv preprint arXiv:1710.00486 (2017).
[31] D. Gopinath, K.Wang, M. Zhang, C. S. Pasareanu, and S. Khurshid. 2018. Symbolic

Execution for Deep Neural Networks. In arXiv preprint arXiv:1807.10439.
[32] Mats Grindal, Jeff Offutt, and Sten F Andler. 2005. Combination testing strategies:

a survey. Software Testing, Verification and Reliability 15, 3 (2005), 167–199.

[33] John A Hartigan and Manchek A Wong. 1979. Algorithm AS 136: A k-means

clustering algorithm. Journal of the Royal Statistical Society. Series C (Applied
Statistics) 28, 1 (1979), 100–108.

[34] G. Hinton, L. Deng, D. Yu, G. E. Dahl, et al. 2012. Deep Neural Networks for

Acoustic Modeling in Speech Recognition: The Shared Views of Four Research

Groups. IEEE Signal Processing Magazine 29, 6 (2012), 82–97.
[35] Xiaowei Huang, Daniel Kroening, Marta Kwiatkowska, Wenjie Ruan, Youcheng

Sun, Emese Thamo, Min Wu, and Xinping Yi. 2018. Safety and Trustworthiness

of Deep Neural Networks: A Survey. arXiv preprint arXiv:1812.08342 (2018).
[36] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu. 2017. Safety Verification of

Deep Neural Networks. In International Conference on Computer Aided Verification
(CAV). 3–29.

[37] Yue Jia and Mark Harman. 2011. An analysis and survey of the development of

mutation testing. IEEE transactions on software engineering 37, 5 (2011), 649–678.

[38] Paul C Jorgensen. 2013. Software testing: a craftsman’s approach. Auerbach

Publications.

[39] Kyle D Julian, Jessica Lopez, Jeffrey S Brush, Michael P Owen, and Mykel J

Kochenderfer. 2016. Policy compression for aircraft collision avoidance systems.

In IEEE Digital Avionics Systems Conference (DASC). 1–10.
[40] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer.

2017. Reluplex: An efficient SMT solver for verifying deep neural networks. In

International Conference on Computer Aided Verification (CAV). 97–117.
[41] Leonard Kaufman and Peter J Rousseeuw. 2009. Finding groups in data: an

introduction to cluster analysis. Vol. 344. John Wiley & Sons.

[42] Timothy Patrick Kelly. 1999. Arguing safety: a systematic approach to managing
safety cases. Ph.D. Dissertation. University of York York.

[43] Jinhan Kim, Robert Feldt, and Shin Yoo. 2019. Guiding Deep Learning System Test-

ing using Surprise Adequacy. In Proceedings of the 41th International Conference
on Software Engineering (ICSE 2019).

[44] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. 2016. Adversarial Examples

in the Physical World. arXiv preprint arXiv:1607.02533 (2016).
[45] Yann LeCun. 1998. The MNIST database of handwritten digits. http://yann. lecun.

com/exdb/mnist (1998).

https://keras.io/examples/cifar10_cnn/
https://github.com/udacity/self-driving-car
https://github.com/udacity/self-driving-car
https://www.wired.com/2016/02/googles-self-driving-car-may-caused-first-crash
https://www.wired.com/2016/02/googles-self-driving-car-may-caused-first-crash
https://www.ntsb.gov/investigations/AccidentReports/Reports/HWY18MH010-prelim.pdf
https://www.ntsb.gov/investigations/AccidentReports/Reports/HWY18MH010-prelim.pdf
https://en.wikipedia.org/wiki/Death_of_Elaine_Herzberg
https://keras.io
http://www.deeplearningbook.org

ICSE ’20, May 23–29, 2020, Seoul, South Korea Simos Gerasimou, Hasan Ferit Eniser, Alper Sen, and Alper Cakan

[46] Yann Lecun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature
521, 7553 (2015), 436–444.

[47] Francesco Leofante, Nina Narodytska, Luca Pulina, and Armando Tacchella.

2018. Automated verification of neural networks: Advances, challenges and

perspectives. arXiv preprint arXiv:1805.09938 (2018).
[48] Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, et al. 2017. A survey on deep

learning in medical image analysis. Medical Image Analysis 42 (2017), 60–88.
[49] Yanchi Liu, Zhongmou Li, Hui Xiong, Xuedong Gao, and Junjie Wu. 2010. Un-

derstanding of internal clustering validation measures. In 2010 IEEE International
Conference on Data Mining. IEEE, 911–916.

[50] Lei Ma, Felix Juefei-Xu, Minhui Xue, Bo Li, Li Li, Yang Liu, and Jianjun Zhao.

2019. DeepCT: Tomographic Combinatorial Testing for Deep Learning Systems.

In 2019 IEEE 26th International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 614–618.

[51] L. Ma, F. Juefei-Xu, F. Zhang, J. Sun, et al. 2018. DeepGauge: Multi-Granularity

Testing Criteria for Deep Learning Systems. In IEEE/ACM International Conference
on Automated Software Engineering (ASE).

[52] L. Ma, F. Zhang, J. Sun, M. Xue, et al. 2018. DeepMutation: Mutation Testing of

Deep Learning Systems. In IEEE International Symposium on Software Reliability
Engineering (ISSRE).

[53] Andrew LMaas, Awni Y Hannun, and Andrew YNg. 2013. Rectifier Nonlinearities

Improve Neural Network Acoustic Models. In International Conference onMachine
Learning (ICML), Vol. 30. 3.

[54] Aditya P Mathur. 2013. Foundations of software testing, 2/e. Pearson Education

India.

[55] Grégoire Montavon, Sebastian Lapuschkin, Alexander Binder, Wojciech Samek,

and Klaus-Robert Müller. 2017. Explaining nonlinear classification decisions with

deep taylor decomposition. Pattern Recognition 65 (2017), 211–222.

[56] A. Odena and I. Goodfellow. 2018. TensorFuzz: Debugging Neural Networks with

Coverage-Guided Fuzzing. In arXiv preprint arXiv:1807.10875.
[57] Nicolas Papernot, Ian Goodfellow, Ryan Sheatsley, Reuben Feinman, and Patrick

McDaniel. 2016. cleverhans v1.0.0: an adversarial machine learning library. arXiv
preprint arXiv:1610.00768 (2016).

[58] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, et al. 2016. The

Limitations of Deep Learning in Adversarial Settings. In International Symposium
on Security and Privacy (S&P). 372–387.

[59] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. DeepXplore: Auto-

mated whitebox testing of deep learning systems. In Symposium on Operating
Systems Principles (SOSP). 1–18.

[60] Mauro Pezze and Michal Young. 2008. Software testing and analysis: process,
principles, and techniques. John Wiley & Sons.

[61] Luca Pulina and Armando Tacchella. 2010. An Abstraction-refinement Approach

to Verification of Artificial Neural Networks. In International Conference on
Computer Aided Verification (CAV). 243–257.

[62] Peter J Rousseeuw. 1987. Silhouettes: a graphical aid to the interpretation and

validation of cluster analysis. Journal of computational and applied mathematics
20 (1987), 53–65.

[63] RTCA/EUROCAE. 2011. DO-178C: Software Considerations in Airborne Systems

and Equipment Certification. (2011).

[64] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. 1986. Learning

Representations by Back-propagating Errors. Nature 323, 6088 (1986), 533.
[65] Rick Salay, Rodrigo Queiroz, and Krzysztof Czarnecki. 2017. An Analysis of

ISO26262: Using Machine Learning Safely in Automotive Software. arXiv preprint
arXiv:1709.02435 (2017).

[66] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. 2017. Learning im-

portant features through propagating activation differences. In Proceedings of
the 34th International Conference on Machine Learning-Volume 70. JMLR. org,

3145–3153.

[67] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional Net-

works for Large-scale Image Recognition. arXiv preprint arXiv:1409.1556 (2014).
[68] Y. Sun, X. Huang, and D. Kroening. 2018. Testing Deep Neural Networks. In

arXiv preprint arXiv:1803.04792.
[69] Youcheng Sun, Xiaowei Huang, Daniel Kroening, James Sharp, Matthew

Hill, and Rob Ashmore. 2018. Testing Deep Neural Networks. (2018).

arXiv:cs.LG/1803.04792

[70] Y. Sun, M. Wu, W. Ruan, X. Huang, et al. 2018. Concolic Testing for Deep

Neural Networks. In Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering (ASE). 109–119.

[71] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to Sequence

Learningwith Neural Networks. In International Conference on Neural Information
Processing Systems. 3104–3112.

[72] Y. Tian, K. Pei, S. Jana, and B. Ray. 2018. DeepTest: Automated Testing of Deep-

Neural-Network-Driven Autonomous Cars. In International Conference on Soft-
ware Engineering (ICSE). 303–314.

[73] Kush R Varshney. 2016. Engineering safety in machine learning. In 2016 Informa-
tion Theory and Applications Workshop (ITA). IEEE, 1–5.

[74] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. 2018.

Formal security analysis of neural networks using symbolic intervals. In 27th

USENIX Security Symposium 18). 1599–1614.
[75] MatthewWicker, Xiaowei Huang, and Marta Kwiatkowska. 2018. Feature-guided

Black-box Safety Testing of Deep Neural Networks. In International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS).
408–426.

[76] X. Xie, L. Ma, F. Juefei-Xu, H. Chen, et al. 2018. DeepHunter: Hunting

Deep Neural Network Defects via Coverage-Guided Fuzzing. In arXiv preprint
arXiv:1809.01266.

[77] Jie M Zhang, Mark Harman, Lei Ma, and Yang Liu. 2019. Machine Learning

Testing: Survey, Landscapes and Horizons. arXiv preprint arXiv:1906.10742 (2019).

http://arxiv.org/abs/cs.LG/1803.04792

	Abstract
	1 Introduction
	2 Background
	2.1 Deep Learning Systems
	2.2 Coverage Criteria in Software Testing

	3 Approach
	3.1 Neuron Importance Analysis
	3.2 Important Neurons Clustering
	3.3 Importance-Driven Coverage

	4 Implementation
	5 Evaluation
	5.1 Research Questions
	5.2 Experimental Setup
	5.3 Results and Discussion
	5.4 Threats to Validity

	6 Related Work
	7 Conclusion
	References

