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Abstract. Current devices and sensors have revolutionized our daily lives, with
the healthcare domain exploring and adapting new technologies. The rapid
explosion of digital healthcare happened with the help of current 4G LTE tech-
nologies including innovations such as the continuous monitoring of patient
vitals, teleporting doctors to a virtual environment or leveraging Artificial
Intelligence to generate new medical insights. The arised problem is that current
4G LTE based communication platforms will not be able to keep up with the
exploding connectivity demands. This is where the new 5G technology comes,
expected to support ultra-reliable, low-latency and massive data communications.
In this paper, an end-to-end approach is being provided in the healthcare domain
for gathering medical data, anonymizing it, cleaning it, making it interoperable,
and finally storing it through 5G network technologies, for their transmission to a
different location, supporting real-time results and decision-making.
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1 Introduction

In recent years, there has been a lot of focus on how medical and health-monitoring
devices, clinical wearables, and remote sensors can contribute to better health for
patients and a more efficient healthcare that can drive better systems, population, and
patient outcomes [1]. Currently, healthcare is one of the fastest industries to adopt the
Internet of Things (IoT) technologies, which help in personalized services, reducing
operating costs, and improving patient care and quality of life. However, for most
patients and providers, the vague promises of the IoT has not yet led to dramatic
changes in how patients experience healthcare [2].

It is undeniable that what is needed is faster connection speeds that will be
transforming the healthcare providers - patients relationship, integrating electronic
communications into medical care, which can be achieved through the arrival of the
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5G networks [3]. From the comfort of their homes, patients will wear remote medical
sensors, transmitting their vital signs to healthcare providers that will allow doctors and
caregivers to monitor an array of vitals, dynamically manage treatment plans, and
conduct a consult or intervention over webcam. To this context, 3G networks will take
this recent medical trend to the next level and provide a significant economic boost to
the medical community. According to IHS Market, 5G will enable more than $1 trillion
dollars in products and services for the global healthcare sector [4], while by 2020,
around 50 billion connected devices and 212 billion connected sensors are expected to
be supported by the 5G network [5]. For healthcare, this means the birth of entire
digital ecosystems that can aid medical research, diagnose conditions, and provide
treatment at ever-increasing rates. Hence, 5G represents a completely new way for
accomplishing digital networking and upgrading the healthcare experiences, by
delivering a holistic personalized view of the patients anytime and anywhere.

However, apart from this challenge, additional problems remain concerning the
transmission of the medical data, since 5G networks are providing solutions on ‘how’
data will be transmitted, and not on ‘what’ kind of data will be transmitted. Conse-
quently, the problem is not only the difficulty of data exchange between systems, but
also the devices’ data incompatibility. More particularly, IoT medical devices are
typically characterized by a high degree of heterogeneity, in terms of having different
capabilities, functionalities, etc. In such a scenario, it is necessary to provide abstrac-
tions of these heterogeneous devices and manage their interoperability so as to finally
collect medical data out of them [6]. However, existing integration technologies lack of
sufficient flexibility to adapt to these changes, as their techniques are both static and
sensitive to new or changing device implementations [7].

Even if some researches have overcome this problem, the next problem that arises
is that the collected data is difficult to be anonymized due to its inherent heterogeneity,
and therefore preventing the sharing of data for secondary purposes (e.g. data analysis,
research). At the same time, anonymization and pseudo-anonymization techniques
have been heavily debated in the ongoing reform of EU data protection law [8]. Thus,
the main question that arises is how to implement anonymization in such a way that
will protect individual privacy, but will still ensure that the data is of sufficient
quality [9].

Nevertheless, the problem does not stop there. Even if it has become feasible to
manage thousands of heterogeneous IoT devices, collect data out of them, and anon-
ymize it, the quality of these devices, as well as their derived data are of dubious
quality. Henceforth, the next challenge that emerges is the identification of the devices’
quality levels, in conjunction with their derived data that need to be qualitative in the
maximum degree. The quality evaluation of the devices, as well as of their produced
data are mainly treated as black boxes in the IoT domain, and not much thought is
given to their quality when integrated into larger systems [10]. Using such devices
without proper quality evaluations may have serious implications in the health domain,
whilst the absence of data quality could reduce the grade of the successful interpre-
tation of the out coming results and findings [11].

On top of all these, data heterogeneity is one of the most fundamental challenges in
the healthcare domain, as medical devices are rapidly expanding, producing tons of
heterogeneous data. In this context, interoperability is the only sustainable way to
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enable healthcare entities acting in various locations, and using distinct information
systems from different vendors, to collaborate and deliver quality healthcare. A study
estimated that savings of approximately $78 billion could be achieved annually if data
exchange standards were utilized across the healthcare sector [12]. Multi-site healthcare
provisioning and research requires electronic health records (EHRs) data to be
restructured into a common format and standard terminologies, linked to other data
sources, which is currently delivered through the HL.7 FHIR standard [13].

Taking into consideration all of the aforementioned challenges, in this paper an
end-to-end approach is being introduced in the healthcare domain for gathering medical
data, anonymizing it, processing it, making it interoperable, and finally storing it,
through 5G network technologies. In short, an approach is proposed for the dynamic
integration of both known and unknown heterogeneous medical devices during run-
time, by providing a Dynamic Data Acquisition API for efficiently collecting their data.
In order to anonymize this data, an anonymization part is added to the approach, by
implementing k-Anonymity techniques for impeding re-identification, and removing
some information, letting concurrently the data to be intact for future use, protecting
both individual privacy, and making sure that the data is of sufficient quality.

On top of this, in order to assess the quality of the selected heterogeneous devices
in conjunction with their derived data, the proposed approach facilitates the devices’
reliability, in combination with the quality estimation of their provided data, by firstly
cleaning all the acquired data. As soon as the devices’ reliability is being completed,
and as a result only the reliable devices are kept connected to the platform in con-
junction with their corresponding gathered cleaned data, the interoperability of the
latter occurs. For that reason, a filtering mechanism is proposed for defining EHRs and
medical data as ontologies, which are used to provide a semantic model for repre-
senting definition rules of multiple medical standards that are being finally transformed
into HL7 FHIR format. All the aforementioned, are being performed through the
implementation of a 5SG communication network, as well as an enhanced 5G platform
with fully virtualized infrastructure, that are likely to change the way that personalized
healthcare is currently provided, for both patients and caregivers.

The rest of this paper is organized as follows. Section 2 presents the state of the art
regarding the related work in the healthcare context with regards to the 5G networks,
data transmission, security, devices and data heterogeneity comparing them with our
approach. Section 3 describes the proposed approach of the interoperable data trans-
mission through the proposed eHealth 5G platform, while Sect. 4 analyzes our con-
clusions and future goals.

2 Related Work

2.1 5G Networks

While many things on the road to 5G are uncertain, it is easy to envision the emergence
of new and innovative use cases. This new technology allows a significantly higher
data capacity and extremely fast response times, opening up completely new potential
applications for a fully connected society. Especially in the healthcare domain this
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constitutes a prerequisite, as faster and more accurate results are needed. Consequently,
the industry is facing a new wave of digitalization, referred as Healthcare 4.0 [14].
Healthcare 4.0 is a vision of care delivery that is distributed and patient-centered, and
there is already evidence of a shift towards virtualization and individualization of care.
Virtualization in the healthcare domain comes with the emergence of next generation
mobile network strategies (5G) as foundation, in order to complete the transition to
personalized care [15]. The delivery of such virtualized care needs to be executed in
real time and based on real time data collection, which can be delivered anywhere,
anyhow and at any time. Thus, 5G will be a catalyst to trigger innovation of new
products and services in the health care domain, by integrating networking, computing
and storage resources into one unified infrastructure.

As the 5G Infrastructure Public Private Partnership (5G-PPP) emphasized in [16],
the new 5G network should facilitate the integration with the service layer and enable
an effective network resource negotiation (i.e. QoS, latency, speed, reliability). Espe-
cially in the healthcare domain, various researches have been conducted trying to cover
the different aspects of 5G. In more details, in [17] a summary of the benefits offered by
5G to eHealth is presented, pointing out the new imaging techniques and the possibility
of a second opinion thanks to the high-speed transmission of X-rays or scans, the
telemonitoring that helps to obtain better diagnostics, and the data mining applied to
medical data that helps to adjust the treatment among others. Also, an architecture with
5G for a typical Wireless Body Area Network was presented in [18], while in [19] the
5G-Health is introduced as the next generation of eHealth, discussing the possibilities
of medical video streaming, thanks to the high speed reached in 5G networks. To that
concept, [20] described how 5G technologies will enable new ways of instant exchange
of information in order to deliver personalized healthcare data in real time, as well as
how to provide more effective and efficient therapeutic approaches. Additional research
included in [21], where the authors introduced systems of wearable medical devices
and sensors for monitoring physiological recorded signals, within a 5G infrastructure.
Finally, in [22] a potential 5G network and machine-to-machine communication is
presented for developing and evolving mobile health applications.

2.2 Data Integration

Data integration is considered a key component and, especially in the healthcare
domain, where in most of the cases it is considered as a prerequisite in nearly every
systematic attempt to achieve integrated care. In the context of healthcare, data inte-
gration is a complex process of combining multiple types of data from different
heterogeneous sources into a single system/platform [23]. Henceforth, regardless of the
way in which devices are connected to each platform, they should be able to be
uniformly discoverable and integrated with different platforms, in order for the latter to
have access to the sources’ medical data.

To this concept, various IoT infrastructures have been proposed in the literature,
especially in the healthcare domain, putting their efforts on the integration of hetero-
geneous medical devices in order to be interoperable and pluggable to different plat-
forms, while offering their data. In more details, the authors in [24] proposed a system
to automate the process of collecting patient’s vital data via a network of sensors
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connected to legacy medical devices and deliver this information to the medical cen-
ter’s cloud for storage, processing, and distribution. Moreover, the authors in [25]
proposed an ontology-based cognitive computing eHealth system, aiming to provide
semantic interoperability among heterogeneous loT fitness devices and wellness
appliances in order to facilitate data integration, sharing and analysis. In the same
notion, in [26] the ContQuest was proposed, a framework that among its functionali-
ties, defined a development process for integrating new data sources including their
data description and annotation, by using the Ontology Web Language (OWL) [27] to
model and describe data sources. In the same concept, the proposed approaches in
[28-31] coped with the frequent modification of data source’s schemas, by providing
homogeneous views of various data sources based on a domain ontology [7]. In
addition, the authors in [32] presented an ontology based on data integration archi-
tecture within the context of the ACGT project, where emphasis was given to resolve
syntactic and semantic heterogeneities when accessing integrated data sources. Finally,
the authors in [33] proposed an IoT based Semantic Interoperability Model (IoT-SIM)
to provide semantic interoperability among heterogeneous IoT devices in healthcare
domain.

2.3 Data Anonymization

In the healthcare domain, privacy issues must be taken into consideration, as eHealth
services offer efficient exchange of the patients’ data between different entities [34].
Hence, all this medical data that is exchanged and shared among them must be fully
anonymized, overcoming the various security issues that may arise. Therefore, in order
to comply with these issues, healthcare stakeholders seek to use personal data pro-
tection solutions, using mainly data anonymization [35]. More particularly, data
anonymization refers to the process of modifying personal data in such a way that
individuals cannot be re-identified and no information about them can be learned [36],
ensuring that even if anonymous data is stolen, it cannot be used in violation of the law.
Especially in the healthcare domain, all the data that can identify a patient must be
removed together with any other information, which in conjunction with other data
held by or disclosed to the recipient, could identify the patient [37].

Hence, in order to achieve this kind of anonymization, k-anonymity [38] is most
widely implemented, ensuring that each record in a dataset has at least k-1 indistin-
guishable records. To this context, various researches have been conducted, focusing
mainly on data privacy preserving in cloud networks [39, 40], while most of them are
mainly using k-anonymity. Apart from this, the authors in [41] adopted the (a, k)-
anonymity model as a privacy detection scheme to collect data and propose a new
privacy preserving data collection method based on anonymity for healthcare services.
Moreover, in order to avoid privacy leakage, the authors in [42] adopted k-anonymity
to protect data from re-identification, proposing a semantic-based linkage k-anonymity
(LA) to de-identify record linkage with fewer generalizations and eliminate inference
disclosure through semantic reasoning, whilst the authors in [43] proposed the LA
through which only obfuscated individuals in a released linkage set are required to be
indistinguishable from at least k-1 other individuals in the local dataset.
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2.4 Data Cleaning

Data cleaning plays a significant role in a broad variety of scientific areas, being
responsible for detecting and removing errors and inconsistencies from data, improving
its quality [44]. Therefore, data cleaning routines shall be applied to clean the data by
filling in missing attributes and values, smoothing and leveling noisy data, identifying
and removing outliers, as well as determining and settling inconsistencies [45]. Thus,
preparing and cleaning data prior to analysis is a perennial challenge in data analytics,
and especially in the healthcare domain, where the produced data is of major impor-
tance given that they drive medical decision making.

For that reason, over the last two decades data cleaning has been a key area of
research, and many authors have proposed algorithms for data cleaning to remove
inconsistencies and noises out of data. The most common inconsistency type has to do
with the missing data, for which various algorithms have been proposed so far (i.e.
constant substitution, mean attribute value substitution, random attribute value sub-
stitution [46]). However, apart from these approaches, there have been proposed sev-
eral other solutions regarding the different data cleaning problems that may occur. In
[47] a method is implemented for managing data duplications, where duplication
detection is done either by detecting duplicate records in a single database or by
detecting duplicate records in multiple other databases. In the same concept, in [48] a
two-step technique that matches different tuples to identify duplicates and merge the
duplicate tuples into one is proposed. What is more, to compensate the complexity of
data expression, many data cleaning methods are using heuristic rules and user guid-
ance, such as [49-52], which require manual labor for the cleaning process. Hence, in
[53] an ontology-based data cleaning solution is implemented, using existing tech-
nologies to understand and differentiate the contents of the data, and performing data
cleaning without the need of human supervision. Apart from these, in [54] the authors
proposed a solution for detecting and repairing dirty data, by offering a commodity data
cleaning system that resolves errors like inconsistency, accuracy, and redundancy, by
treating multiple types of quality rules holistically. In this context, in [55] a rule-based
data cleaning technique is proposed, whereby a set of domain specific rules define how
data should be cleaned.

2.5 Sources Reliability

A great attention has been given to the reliability challenge, confronting system reli-
ability as a fundamental requirement of IoT devices. In more details, reliability is a
measure of the ability that a system operates as expected under predefined conditions
for a predefined time [56]. According to [57] reliability is a technical effort made to
ensure that a developed system is free from any fault that can result to failure during
operation. It entails that the system is highly dependable and functions maximally at
any given time or condition over the period it is created or developed to serve.

To this context, various reliability methods have been proposed in the literature
regarding the IoT world, and especially the healthcare domain, putting their efforts on
measuring the reliability of the IoT devices that are being used for various health
purposes. More particularly, in [58] the authors presented a new methodology for
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estimating hardware and software reliability given uncertain use conditions, so as to
derive probabilistic estimates for overall system reliability. In the same notion, in [59] a
probability-based concept is proposed for measuring the reliability of IoT devices,
investigating the proposed model from the perspectives of consumer world, by using
things link analysis. Furthermore, in [60] the evaluation of the inter-device reliability of
activity monitors was discussed, while in the same concept, in [61] the authors
examined the reliability of consumer activity trackers for measuring step count in both
laboratory and free-living conditions. The study in [62] evaluated the criterion-related
reliability of field-based leg stiffness devices in different testing approaches, by mea-
suring the coefficient of variation, the intraclass correlation coefficient, and the standard
error of measurement of these devices. Moreover, in [63] the intra and interrater
reliability were evaluated upon the point-of-care nerve conduction device in patients
with diabetes and a broad spectrum of nerve injury, while in [64] several criteria and
methods presented for assessing reliability of medical equipment.

2.6 Data Interoperability

Interoperability is considered a necessity in electronic healthcare systems. At the same
time, the development of medical standards has significantly evolved, yet bearing
unsolved challenges with clinical data distributed among heterogeneous sources [65].
The Health Level Seven International (HL7) organization provides the development
and the framework of standards, of which the most commonly used is the HL7 v2.x
[66], however, HL7 FHIR [13] is the latest standard created by the HL7 organization
for the exchange of clinical information, whose main motivation was to simplify and
reduce the complexity of the mechanisms and structures defined by it, avoiding the
mistakes made in its previous standards (HL7 v3 [67], CDA [68]).

To this context, various researches have been developed for covering the different
standards that exist for confronting data interoperability. In more details, the Detailed
Clinical Models (DCM) [69] have been used for defining clinical information inde-
pendently of a specific clinical standard, but aiming to offer the possibility of being
transformed into other medical standards. Another approach of data harmonization was
the 5-year strategy of NHS Wales focusing on developing an open platform across a
fully integrated electronic patient record with the core of the clinical terminology
Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) [70]. A pro-
cess based on HL7 standard and SNOMED CT vocabulary from the biomedical
domain and the latest semantic web technologies has been developed and tested within
the framework of EURECA EU research project [71], aiming to homogenize the
representation and normalization of clinical data. Moreover, in [72] the interoperability
among different healthcare systems was reached by annotating the Web Service mes-
sages through archetypes defined in OWL, whereas the same researchers presented an
approach [73] based on archetypes, ontologies and semantic techniques for the inter-
operability between HL7 CDA and ISO 13606 systems, which were represented in
OWL. Finally, the work of [74] must be mentioned, where the authors presented a
solution based on the Enterprise Service Bus that was translated into the healthcare
domain using the ideals of HL7 V3 and SNOMED CT.
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Taking into consideration all the aforementioned approaches that have been pro-
posed for dealing with the different challenges that exist concerning 5G networks, data
integration, anonymization, cleaning, reliability, as well as interoperability in the
healthcare domain, we can conclude that our approach is extremely innovative. More
particularly, compared with the existing 5G platforms, the proposed eHealth 5G
Platform provides simple and powerful access to the medical devices, along with high
system capacity, great speed and ultra-high reliability. Apart from this, all the resear-
ches that have been made for integrating heterogeneous devices, lack of sufficient
flexibility and adaptability to solve challenges arisen from dynamically integrating both
known and unknown devices during runtime, a scenario that is fully supported by the
data integration part that is developed in our approach. Regarding data anonymization,
no innovation is being proposed, as we simply make use of the k-anonymity algorithm.
Regarding data cleaning, the existing surveys have presented different approaches for
it, lacking an end-to-end iterative data cleaning process, a problem that is totally
eliminating in our approach, where an end-to-end iterative data cleaning process is
implemented, being capable of cleaning data deriving from both known and unknown
devices. As for devices reliability, all the researches that have been proposed so far for
characterizing devices’ reliability are based only upon the devices’ reliability itself,
without considering data reliability issues, thus not stating a combined approach, which
is crucial for any application in the healthcare domain. Henceforth, the devices relia-
bility part of our approach is considered innovative, as it confronts devices’ reliability
in combination with their derived data quality. Finally, considering data interoper-
ability, several solutions have been proposed enabling the access to the existing
medical data for specific clinical organizations, lacking however to be applied to dif-
ferent medical standards and incoming data, thus not providing a generic approach
being able to address heterogeneous healthcare data. To address this gap and confront
the interoperability issues, our approach includes a generalized mechanism that
employs several matching operations to the HL7 FHIR standard.

3 Proposed Approach

In our approach, an innovative mechanism is proposed for gathering medical data from
numerous heterogeneous [oT medical devices, anonymizing this data, cleaning it,
making it interoperable, and finally storing it through 5SG communication technologies.
More specifically, the proposed approach consists of the six (6) main stages: (i) 5G
Communication Network, (ii) Data Integration, (iii) Data Anonymization, (iv) Data
Cleaning, (v) Devices Reliability, and (vi) Data Interoperability, accompanied with
Data Storage, as illustrated in Fig. 1.

5G Network. The architecture of the used 5G Network consists of two (2) major steps
related to the 5SG communication and integration. Initially, the collection of the data
takes place at high reliable edge-nodes, in order to allow the connection of the physical
world (i.e. biological system) and the virtual world (i.e. 5G infrastructure). In order to
achieve this, the deployment of the edge node in each medical device is being con-
nected through a 5G Radio Access Network (5G RAN) [75], enabling finally the
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Fig. 1. Architecture of the proposed approach

analysis of the information inside the eHealth 5G Platform through the appropriate
integration of different Virtual Network Functions (VNFs) [76].

In more details, in the first step the identification of the available heterogeneous loT
medical devices takes place, through the established 5G RAN communication network.
Due to the diverse and extreme requirements of the healthcare data, as well as the
eHealth services, the 5G RAN designed to operate in a wide range of spectrum bands,
with diverse characteristics, such as channel bandwidth and propagation conditions.
The challenge in 5G RANs is how to dynamically assign the foreseen wide range of
services with diverse requirements to the many spectrum bands, usage types and radio
recourses. Therefore, the proposed approach comes to resolve this challenge by using
the Radio Access Network as a Service (RANaaS) [77], by partially centralizing the
functionalities of the RAN depending on the actual needs, as well as the network
characteristics, being able to handle huge amounts of data, in high-speed with low-cost,
providing on-demand resource provisioning delay-aware storage, and high network
capacity wherever and whenever needed. Thus, through this established connection, all
the data of the connected health devices are being gathered, containing information
about the used devices” APIs (i.e. source code) that is assumed that is written in the
same programming language, accompanied with the devices’ specifications (i.e.
hardware and software) that contain the same semantics in terms of specifications’
descriptions and measurement units. To this end, it should be noted that the gathered
data comes from different entities and systems, referring that is coming either from
(i) medical devices that are used by the patients for their in-home monitoring, or
(ii) medical devices, EHRs, PHRs that are used by the patients and the healthcare
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professionals in medical laboratories for keeping patients’ measurements, or
(iii) medical devices, EHRs, PHRs that are used by the patients and the healthcare
professionals in hospitals for recording and keeping patients’ measurements, or finally
(iv) medical devices that are used by the patients for their outdoor activities.

eHealth 5G Platform
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Fig. 2. 5G enhanced platform

As soon as all this data has been collected, the second step occurs, where the 5G
architecture of the eHealth platform is being developed, using the technologies of
Network Function Virtualization (NFV) [78] and Software Defined Network
(SDN) [79]. The value of the 5G SDN (especially in conjunction with NFV and
virtualized networking) is its ability to provide network virtualization, automation and
creation of new services over virtual resources, affording an extremely manageable and
cost-effective architecture, making it ideal for the dynamic, high-bandwidth nature of
eHealth. Furthermore, VNFs move individual network functions out of dedicated
hardware devices into software that runs on commodity hardware, while it is worth
saying that VNFs can run as virtual machines (VMs). In the current approach, we
adapted the ongoing SGTANGO’s Service Platform [80], which consists mainly of
three (3) discrete blocks: (i) the Service Development Kit, (ii) the Validation and
Verification, and (iii) the Service Platform that will be parameterized in our approach.
As shown in Fig. 2, the proposed eHealth 5G platform consists of several components
which support the whole lifecycle of the VNFs, by the time that they are developed
until the time that they are instantiated. Initially, through the NFV Infrastructure all the
data management mechanisms that are provided through the eHealth 5G platform (i.e.
data integration, data anonymization, etc.) are constructed in the form of VNFs. This
transformation is a prerequisite for the efficient operation of the platform, providing it
with quite flexibility, cost-efficiency, and scalability, being able to be virtualized in
different eHealth platforms running in different entities (i.e. hospitals, health clinics
etc.). As soon as all the mechanisms are being transformed into VNFs, the Security
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Gateway component is being implemented, which is responsible for controlling the
privileges and the users’ access to the platform, by validating the corresponding
requests. This is of crucial importance in the context of open 5G ecosystems, where
entry barriers are disruptively lowered, without decreasing security [81]. Apart from
this, it is of crucial importance to guarantee Quality of Service (QoS) of the developed
eHealth 5G platform. For that reason, we create an integrated view of the healthcare
applications, the interconnection infrastructure support, and the operational support
with common services. Finally, on top of all these, the eHealth 5G platform provides
the NFV Management & Orchestration component that uses the MANO framework
[82], which is responsible for managing the lifecycle of all the VNFs requests and
instances by orchestrating the available infrastructure.

Data Integration. In this stage the data integration occurs, for easily and rapidly
integrating heterogeneous IoT medical devices during runtime, concerning both known
and unknown devices, so as to be able to collect data out of them. Therefore, this stage
contains the first data mechanism of the eHealth 5G platform, while it consists of four
(4) discrete substages (Fig. 3), following the work conducted in [83].

In the first substage of the mechanism, as soon as all the devices have been
connected to the eHealth 5G platform, these are categorized into either known (in terms
of devices of known type, containing predefined APIs methods) or previously unknown
devices (in terms of devices of unknown type, containing undefined APIs methods).
Afterwards, through the established 5G network connection, information is gathered
concerning both devices’ specifications (i.e. hardware and software) and APIs (i.e.
multiple methods). Thus, information is gathered about (i) both known and unknown
devices’ specifications, (ii) known devices’ APIs in terms of source code and of what
exactly each method in the API represents, and (iii) unknown devices’ APIs in terms of
source code, as the significance of each method in the API is unknown.

Afterwards, in the second substage the classification of the devices’ specifications
occurs, following the approach proposed in [84]. By knowing (i) the device type of the
known devices as well as their specifications, and (ii) the specifications of the unknown
devices, their classification occurs, considering the known devices’ types and the
similar specifications that all these devices may have with the unknown devices. Based
on the classification outcomes, the identification of the unknown devices” type takes
place, assuming that the devices with the same specifications are of the same type (e.g.
all the spirometers will have approximately the same specifications). As a result, all the
devices of unknown type are considered as known.

In the third substage, the mapping of the devices” APIs methods occurs. More
particularly, in the first substage of Data Integration, knowledge about known devices’
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APIs methods was acquired in terms of source code and of what exactly each method in
the API represents. However, with regards to the unknown devices” APIs methods, the
acquired knowledge referred only to the source code, as the significance of each
method in the API was unknown. Henceforth, in this substage it becomes feasible to
map the known devices” APIs methods with those of the unknown devices, by com-
paring the API methods of the devices of the same type (e.g. all the spirometers). In
order to achieve this mapping, for each one of these devices a Generic API Ontology
(GAO) is constructed, based on the approaches proposed in [7, 85], in order to identify
and model a hierarchical tree of the different classes and sub-classes of the semantics of
the devices’ APIs methods. In more details, each GAO contains different ontologies for
each different method of each device’s API, thus a hierarchical tree is being created for
each API, allowing us to understand and probabilistically map the similar methods. In
our case, the mechanism has to identify and map the method that is responsible for
gathering the unknown devices’ data, thus the method that has been assigned with
higher probability levels, is automatically assigned as the most appropriate method.

Finally, as soon as this mapping is completed, in the fourth substage the imple-
mentation of the Dynamic Data Acquisition API occurs. More particularly, the latter
constitutes of a unified API that merges into a single unified data method all the
different devices APIs’ data methods that are responsible for collecting data, and thus
the collection of devices’ data takes place.

Data Anonymization. In this stage the data anonymization occurs, where the col-
lected data is pre-processed through k-Anonymity using data suppression and data
generalization, following two (2) different substages, as depicted in Fig. 4.

Data Anonymization
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Fig. 4. Data anonymization process
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In the first substage, the data-type identification of the collected data takes place,
through which we are able to identify whether an individual value of an attribute can be
anonymized through the data suppression or the data generalization method, by
identifying the data type of each value. It should be mentioned that only the personal
data (i.e. data that identify a person) are being filtered through this mechanism.

Therefore, in the second substage, the anonymization of the collected data occurs,
where k-Anonymity is being implemented, applying data generalization and/or data
suppression, depending on the results of the data-type identification. In more details,
through the data suppression method, certain values of the attributes are replaced by a
hashtag ‘#’, according to their semantics and to what they represent. Regarding the data
generalization method, individual values of attributes are replaced with a broader
category, being given a range where the anonymized value can be found in between.
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Consequently, implementing the corresponding method upon the collected data, we
result into the fully anonymization of it, taking into consideration that the numeric
values are being anonymized through the data generalization method, while all the
other types of values are anonymized through the data suppression method.

Data Cleaning. In this stage, the cleaning of the anonymized data takes place, which
is received as an input in conjunction with the device type that gathered this data,
maintaining the data model of each device type. Within this data model, the elements of
the data are defined in addition to a set of constraints, predefined rules for the corrective
actions, and the automated data filling. Therefore, for each dataset four (4) discrete
substages are followed sequentially, as illustrated in Fig. 5.

Data Cleaning
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Completion

Fig. 5. Data cleaning process

In the first substage, the data validation occurs that identifies all the errors asso-
ciated with the conformance to a set of predefined rules, such as data type (i.e. integer,
string, etc.), range constraints (i.e. minimum and maximum values), uniformity (i.e.
data format), predefined values (i.e. values selected from a predefined list), and
mandatory fields. Hence, a variety of validity checks is performed aiming to safeguard
the accuracy and the consistency of the data by ensuring the conformance both to the
specified constraints on the data model for this device type and the identified
duplicates.

In the second substage, the data cleaning occurs that eliminates the errors identified
in the previous substage, where based on the set of the predefined rules,
corrective/removal actions are applied on the identified erroneous records of the data.

Sequentially, in the third substage the data completion takes place that safeguards
the appropriateness and completeness of the data, especially referring to erroneous
inliers, where the conformance to mandatory fields and required non-empty attributes
of the data is ensured based on the predefined conformance rules of the data model.

Finally, in the fourth substage, the data verification occurs that executes the eval-
uation of the undertaken actions in the previous substages, ensuring the accuracy and
consistency of the cleaned data. Thus, the final results are produced, indicating the
undertaken total corrective actions in combination with the derived cleaned data.

Devices Reliability. In this stage the devices reliability takes places, in combination
with the quality estimation of their provided data, as depicted in Fig. 6. This stage is of
major importance, as it is not sufficient to keep all the derived data and use it for further
analysis, as many of it may have derived either from unreliable devices, or from
reliable devices being uncleaned and faulty. For that reason, it is necessary to measure
and evaluate the quality of both the connected devices and their produced data, so as to
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finally keep only the reliable data that comes from only reliable devices. In our case, for
measuring devices’ reliability we captured the metric of the availability of the con-
nected devices, an important metric for assessing the quality of the devices [57].
Therefore, we measure each device’s availability by getting the corresponding values,
setting a timestamp in order to measure how often each device communicates with the
platform and provides its data. However, it is not sufficient to measure only the devices’
availability for deciding whether the latter is being considered as reliable or not, but it is
more effective to measure also the data quality of these devices. For that reason, we use
as an input from the Data Cleaning stage the number of the undertaken actions that
were applied upon the collected datasets, in order to correlate it with the availability
results of the corresponding devices that produced these datasets, and finally decide
whether each device, and as a result its derived data, are considered as reliable or not.

Devices Reliability

connected

devices Devices measured Timestamp
L] Availability Threshold

actions

Fig. 6. Devices reliability process

Data Interoperability. In this stage, the final transformation of the data takes place.
Thus, the data interoperability process occurs, including an automated way for trans-
forming the ingested data into HL.7 FHIR format in terms of structure (Fig. 7).

Data Interoperability
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Fig. 7. Data interoperability process

In the first substage, ontologies are created for the source data by transforming the
provided data into an ontological form. Thus, this substage delivers the means so that
the different relationships, classes and instances are discovered, providing a way for
casily classifying these categories, enabling easier manipulation for the next substages.

Afterwards, the second substage provides a relationship-based data store for storing
the identified relationships, classes, and instances, making it easier to perform queries
through the collected data that can possibly contain information concerning one or
more of the stored information. Through this substage it is easier to probabilistically
identify faulty or missed relationships among different classes/instances, through a
relationship matching mechanism that contains a functionality for identifying missing
values, and re-assigning the relationships that have a larger degree of association to a
specific class.
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Sequentially, the third substage provides a mechanism that offers the capability of
understanding and interpreting the semantic meaning of the different classes that have
already been stored into the previous substage. Afterwards, this substage is incorpo-
rating a mechanism that iterates and scans through the different HL7 FHIR resources, in
order to probabilistically map the semantics of the stored classes with a specific
HL7 FHIR resource. In the end, the HL7 FHIR resource with higher probability levels
of correspondence is automatically assigned to the identified class.

Finally, the fourth substage provides a mechanism for setting the final HL7 FHIR-
based form of the classes. Hence, the classes along with their identified HL7 FHIR
resources are obtained, including the name of the HL.7 FHIR resource along with the
specific attribute that the class may belong to, translating them using the HL7 FHIR-
based formatting (i.e. Resource.attribute). Thus, all the data is translated into a com-
mon format, being finally stored into the eHealth 5G platform’s database.

4 Conclusions

While current devices have revolutionized our daily lives in multiple domains, the
quantity of available healthcare data is rising rapidly, far exceeding the capacity to
deliver personal or public health benefits from analyzing this data. Hence, a substantial
overhaul of methodology is required to address the real complexity of health. In this
paper, an innovative end-to-end approach was proposed for gathering medical data,
anonymizing it, cleaning it, making it interoperable, and finally storing it through 5G
network technologies. Therefore, it combined core technologies that are crucial in the
healthcare domain, for delivering results of high-reliability and efficiency. Even though
there have been proposed several techniques for addressing the aforementioned data
domains, most of these have been designed to give a solution to specific problems, with
low flexibility and adaptability. Contrariwise, our approach promises faster results of
high accuracy, merging multiple innovative data manipulation techniques.
Nevertheless, the proposed approach still has to be compared with multiple
mechanisms that provide similar services, and evaluated with datasets of different
nature and size, and in multiple systems, so as to have better interpretable results. Our
future work includes that the mechanism will be also evaluated by testing it with a huge
amount of heterogeneous [oT medical devices of different types. We also plan to
extend the list of the supported data cleaning constraints including more advanced and
sophisticated constraints, while we aim to configure the data anonymization mechanism
by testing it with additional data anonymization algorithms. Finally, we plan to eval-
uate our approach with multiple healthcare data, including formats of unknown nature.
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