Journal article Open Access

MESSAR: Automated recommendation of metabolite substructures from tandem mass spectra

Liu, Youzhong; Mrzic, Aida; Meysman, Pieter; De Vijlder, Thomas; Romijn, Edwin P.; Valkenborg, Dirk; Bittremieux, Wout; Laukens, Kris


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/3612743</identifier>
  <creators>
    <creator>
      <creatorName>Liu, Youzhong</creatorName>
      <givenName>Youzhong</givenName>
      <familyName>Liu</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-1449-3841</nameIdentifier>
      <affiliation>Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium</affiliation>
    </creator>
    <creator>
      <creatorName>Mrzic, Aida</creatorName>
      <givenName>Aida</givenName>
      <familyName>Mrzic</familyName>
      <affiliation>Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium</affiliation>
    </creator>
    <creator>
      <creatorName>Meysman, Pieter</creatorName>
      <givenName>Pieter</givenName>
      <familyName>Meysman</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-5903-633X</nameIdentifier>
      <affiliation>Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium</affiliation>
    </creator>
    <creator>
      <creatorName>De Vijlder, Thomas</creatorName>
      <givenName>Thomas</givenName>
      <familyName>De Vijlder</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-8692-425X</nameIdentifier>
      <affiliation>Pharmaceutical Development &amp; Manufacturing Sciences (PDMS), Janssen Research &amp; Development, Beerse, Belgium</affiliation>
    </creator>
    <creator>
      <creatorName>Romijn, Edwin P.</creatorName>
      <givenName>Edwin P.</givenName>
      <familyName>Romijn</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-1847-6272</nameIdentifier>
      <affiliation>Pharmaceutical Development &amp; Manufacturing Sciences (PDMS), Janssen Research &amp; Development, Beerse, Belgium</affiliation>
    </creator>
    <creator>
      <creatorName>Valkenborg, Dirk</creatorName>
      <givenName>Dirk</givenName>
      <familyName>Valkenborg</familyName>
      <affiliation>Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Diepenbeek, Belgium</affiliation>
    </creator>
    <creator>
      <creatorName>Bittremieux, Wout</creatorName>
      <givenName>Wout</givenName>
      <familyName>Bittremieux</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-3105-1359</nameIdentifier>
      <affiliation>Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, San Diego, CA, United States of America</affiliation>
    </creator>
    <creator>
      <creatorName>Laukens, Kris</creatorName>
      <givenName>Kris</givenName>
      <familyName>Laukens</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-8217-2564</nameIdentifier>
      <affiliation>Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium</affiliation>
    </creator>
  </creators>
  <titles>
    <title>MESSAR: Automated recommendation of metabolite substructures from tandem mass spectra</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2020</publicationYear>
  <dates>
    <date dateType="Issued">2020-01-16</date>
  </dates>
  <resourceType resourceTypeGeneral="JournalArticle"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3612743</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1371/journal.pone.0226770</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Despite the increasing importance of non-targeted metabolomics to answer various life science questions, extracting biochemically relevant information from metabolomics spectral data is still an incompletely solved problem. Most computational tools to identify tandem mass spectra focus on a limited set of molecules of interest. However, such tools are typically constrained by the availability of reference spectra or molecular databases, limiting their applicability of generating structural hypotheses for unknown metabolites. In contrast, recent advances in the field illustrate the possibility to expose the underlying biochemistry without relying on metabolite identification, in particular via substructure prediction. We describe an automated method for substructure recommendation motivated by association rule mining. Our framework captures potential relationships between spectral features and substructures learned from public spectral libraries. These associations are used to recommend substructures for any unknown mass spectrum. Our method does not require any predefined metabolite candidates, and therefore it can be used for the hypothesis generation or partial identification of unknown unknowns. The method is called MESSAR (MEtabolite SubStructure Auto-Recommender) and is implemented in a free online web service available at messar.biodatamining.be.&lt;/p&gt;</description>
  </descriptions>
</resource>
72
46
views
downloads
Views 72
Downloads 46
Data volume 92.1 MB
Unique views 71
Unique downloads 45

Share

Cite as