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ABSTRACT

A method is presented for model reduction. It is based on
the representation of the original model in an (exact) Kautz
series. The Kautz series is an orthonormal model and is
non-unique: it depends on the ordering of the poles. The
ordering of the poles can be chosen such that the last sections
contribute least or the first sections contribute most to the
overall impulse response of the original system (in a quadratic
sense). Having a specific ordering, the reduced model order,
say n, can be chosen by considering the energy contained in a
truncated representation. The resulting reduced order model
is obtained simply by truncation of the Kautz series at the nth
term.

1 INTRODUCTION

In many applications it is convenient to have the disposal of
an adequate description of a linear system by an IIR filter
of lowest possible order (according to some error criterion).
Often, a quadratic norm is used to compare the original system
with its lower order approximation. Taking an ARMA model
description [1], the aim is to determine the poles and zeros
(or numerator and denominator polynomials) of the lower
order model. It is well known that using a quadratic norm
the error surface usually contains many local minima and
that especially the poles turn out to be numerically poorly
conditioned. Furthermore, the model order has to be chosen
beforehand and thus if the best model within this class is not
adequate, the whole estimation procedure has to be repeated.

For these reasons, among others, several suboptimal opti-
mization procedures were developed. One of these is Prony’s
method [2], but it turns out that this method generally over-
estimates the damping terms of the poles [3]. Another
well-known technique is balanced model order reduction [4],
which is also suboptimal in the sense of a quadratic norm. Al-
though this method is appealing from several points of view, it
is also associated with numerical problems as a consequence
of the required matrix decompositions and inversions.

The numerical problems associated with model reduction
can be easily illustrated. Suppose we have a function which
is the sum of two exponential sequences A1 pk

1 and A2 pk
2.

In order that model reduction is possible at all, the poles
should be in each others proximity, i.e. a large part of the

sequence pk
1 can be modelled by pk

2 (and vice versa). (We
exclude the trivial case that one of the exponential sequences
contains hardly any energy at all.) A reduced model involves
finding a sequence Bqk such that the original function is
‘best’ represented by this simpler representation. However,
finding q is a numerically difficult task: small variations in
q around its optimal value typically have little effect on the
error. Instead of trying to solve this problem, we avoid it by
exploiting the property that p k

1, pk
2 and its optimal lower order

model qk have so much in common. In essence, the technique
proposed is the following. Since pk

1 offers already a fair
description of pk

2 (and vice versa) we simply select q as that
pi which models most of the energy of both sequences and
calculate B accordingly. (Note that the excluded trivial case
where one of the exponential sequences contains relatively
little energy also fits in nicely with such a procedure and in
that case the poles do not need to be located in each others
proximity).

Clearly, such technique is suboptimal in a quadratic sense:
we do not optimize over the poles, but make a selection on an
already given set of poles. The essential part of the procedure
is an ordering algorithm, which has been simplified by using
the orthogonalization of exponential sequences as given by a
Kautz series. Furthermore it is noted that the order selection
and model calculation are performed simultaneously and that
if the original model is stable, so is the reduced model.

In the next section the Kautz functions (orthogonalized ex-
ponential sequences) are introduced. In the two subsequent
sections the ordering of the poles and the actual model re-
duction are discussed. Section 5 contains some preliminary
results of the proposed algorithm; large scale tests have as yet
not been carried out. The paper concludes with a discussion.

2 KAUTZ FILTERS

Suppose we have a discrete-time model of large order N given
by its transfer function

H.z/ D
NX

nD1

Rnz

z � pn
D

PN
nD1 Bnzn

QN
nD1.z � pn/

; (1)

with pn the poles and Rn the residues (Rn 6D 0). We assume
that H.z/ is a stable filter jpnj < 1. We introduce A as the set
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Figure 1: A Kautz filter

of poles, i.e., A D fpnI n D 1; Ð Ð Ð ; Ng, and we assume that
pn 6D pm for n 6D m. Thus we have for the impulse response
h.k/ D PN

nD1 Rn pk
n.

The transfer function H.z/ is written as a Kautz series

H.z/ D
NX

nD1

wn8n.z/ (2)

with

8n.z/ D p
1 � qnqŁ

n
z

z � qn

n�1Y
lD1

1 � zqŁ
l

z � ql
(3)

the Kautz functions [5],[6] where Ł denotes conjugation and
fqnI n D 1; Ð Ð Ð ; Ng D A. This Kautz series is of finite order
and exact. The Kautz filter is shown in Fig. 1 where Wn.z/ D
.1 � zqŁ

n /=.z � qn/ and Vn.z/ D p
1 � qnqŁ

n z=.z � qn/.
The Kautz functions are orthonormal

1X
kD0

�m.k/�Ł
n .k/ D Žmn (4)

with Žmn the Kronecker delta and �n.k/ D Z
�1f8n.z/g. As

a consequence of the orthonormality, the weights wn can be
determined by

wn D
X

k

h.k/�Ł
n .k/ D 1

2³ j

I
H.z/8Ł

n.z/
dz

z
; (5)

where j D p�1 and the contour integral is taken
counterclock-wise around the unit circle. The Kautz series
is non-unique: there are N! orderings of pi resulting in al-
lowable qi’s. In fact, (2) can be regarded as N! possible
Gram-Schmidt orthogonalization procedures.

We note that the energy E contained in the impulse re-
sponse can be calculated in the time-domain, in the frequency
domain using Parseval, or from the expansion coefficients in
the Kautz series:

E D
1X

kD0

h.k/hŁ.k/ D
NX

nD1

jwnj2: (6)

3 ORDERING OF THE POLES

3.1 Backward Ordering
In order to be able to do the model reduction we can choose
the ordering of the poles qn such that the least energy is

contained in the last weights. This is done in a recursive way.
First, we select the last pole qN as that pole pn which yields
minimum weight jwN j2. Next, we select qN�1 as that pole
from the remaining set of poles AnqN such that jwN�1j2 is
minimum, etc. In this way we push as much as energy as
possible into the first weights of the Kautz series.

In the mth iteration step we select qNC1�m from the N C
1 � m yet unselected poles pn. The weights that have to be
calculated are called wmn where n only takes on those values
associated with not yet selected poles pn . The weights wmn

can be calculated by

wmn D 1

2³ j

I
H.z/8Ł

NC1�m.z/
dz

z

D p
1 � pn pŁ

n

NX
lD1

Rl

z � pl pŁ
n

N�mY
iD1

pl � qi

1 � plqŁ
i

: (7)

where the qi’s (i D 1; Ð Ð Ð ; N � m) have to be interpreted as
the unselected poles with the exception of pn . We choose
wNC1�m as that value of wmn with minimum absolute value
and qNC1�m as the associated pn. In order to obtain a unique
Kautz series it is required that this minimum is unique. We
assume that in practical situations this is always the case.

3.2 Forward Ordering
In the forward ordering scheme, the poles of the Kautz series
qn are selected in ascending order. This is done by selecting in
the mth iteration the pole qm from the remaining .N �m C1/

poles as that one which yields a maximum absolute value for
the weight wm. Analogous to the previous method it is now
assumed that in each iteration a unique maximum occurs.

3.3 Remarks
ž If the model is exactly reducible (i.e., a model with pole-
zero cancellations, or in terms of (1), one or more Rn equal
zero) then the backward ordering will give the exact lower
order model. The forward ordering method will in general
not produce that result.
ž The forward ordering method requires less computations
than the backward ordering scheme.
ž In the forward ordering method one can set a level of ac-
curacy En=E beforehand. Then the ordering process can be
terminated whenever this accuracy is reached. The backward
ordering always requires to complete the entire procedure.
ž The algorithmfor the ordering of the poles requires a unique
minimum or maximum for the possible weights that are cal-
culated in each iteration step. In view of symmetry, this
condition will not be met in the case of a real model having
one or more complex-conjugated pole pairs. Furthermore, if
one starts from a real system, one usually wants a reduced
model that is real as well. In order to obtain this, the pole
selection procedure has to be adapted in order to guarantee
that complex-conjugated pole pairs occur sequentially.

3.4 Reduction of Real Models
The adaptation of the pole selection scheme for a real model
always keeps complex-conjugated pole pairs together. This



reduces the number of Gram-Schmidt orthogonalization pro-
cedures from N! to .Nr C Nc/! where Nr and Nc are the
number of real poles and complex-conjugated pole pairs, re-
spectively, and N D Nr C 2Nc.

For the forward ordering process we propose the following
algorithm.
1. Add an extra first-order section with a real-valued pole if
a. the absolute value of the weight associated with this pole
is largest of all (as yet unselected) real poles
b. the squared absolute value of this weight is larger than the
sum of squared absolute values of the weights of two addi-
tional first-order sections for any (as yet unselected) complex-
conjugated pole pair.
2. If there is no real pole satisfying the previous require-
ment, we select two additional first-order sections either with
a complex-conjugated pole pair or two real-valued poles. The
selection is as before based on a maximum additional energy.

For the backward ordering procedure similar changes can
be introduced.

4 MODEL REDUCTION

We now have the Kautz series with the desired ordering of
the poles. We can plot En defined as

En D
nX

mD1

jwmj2 (8)

or En=E as a function of n and select the appropriate order
as the minimum of n for which En=E > 1 � ž where ž is
the admissible relative deviation in squared norm between
the original model and its lower order approximation. The
reduced order model is then defined as the nth order model
Hn.z/ D Pn

iD1 wi8i .z/ where 8i are governed by the or-
dered poles. We then have deleted the N � n exponential
sequences (poles) which, after projection on the remaining
set of exponential sequences (poles), contribute least to the
overall impulse response according to a quadratic norm.

If the pole ordering outlined in Section 3.4 is used, not
every order n of the reduced system yields a real system.
In order for the reduced model to be real, truncation in be-
tween a complex-conjugated pole pair (qnC1 D qŁ

n ) must be
prohibited.

5 EXAMPLE

As an example we generated a 30th order random model in
MatLab. The generated system is real. Both the forward and
backward ordering procedures were used keeping complex-
conjugated pole pairs together.

The results in terms of En=E are shown in Fig. 2. The
results show that a reduction in order by typically a factor
2 or 3 is possible for such a 30th order model with very
little loss. A second typical result is that for small orders
the forward ordering provides mostly but not always better
results (see bottom plot in Fig. 2). Since we are usually
interested in a substantial order reduction and in view of
the already mentioned advantages of the forward ordering
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Figure 2: The relative modelled energy En=E as a function
of the reduced model order. The solid and dashed line indi-
cate the results obtained by forward and backward ordering,
respectively.

method, this is considered to be the most promising ordering
procedure. A third remark is that the MatLab random model
generator typically produces an impulse response where the
first values are equal to zero. This can only be accounted
for with difficulty in our Kautz model since such initial zero
response has to be achieved by destructive interference. Thus,
the results will probably improve if the Kautz filter is preceded
by a delay line of appropriate length.

6 DISCUSSION

The procedure can in principle be adapted to the case of mul-
tiple occurring poles. However, we lose degrees of freedom
in the ordering process of the poles. If all the poles are equal,
as for instance starting with an FIR model, there is no flex-
ibility at all. Therefore, we restrict ourselves to the case of
simple poles. The other argument is of course that in practice



this will be the usual case.
The transfer function H.z/ is a restricted N th order rational

function. The general case can also be treated in the previous
way using the following procedure:

H.z/ D
PN

nD0 Bnzn

QN
nD1.z � pn/

D C C
PN�1

nD0 B 0
nzn

QN
nD1.z � pn/

: (9)

The constant C represents the direct feedthrough. The second
part can be used in the model reduction scheme presented
before using one-time delayed versions of the Kautz functions
(3).

The presented ordering procedure is numerically well-
conditioned; it requires no matrix decomposition, matrix in-
versions or other numerically cumbersome methods. How-
ever, should one start with a transfer function given by

H.z/ D
PN

nD0 Bnzn

PN
nD0 An zn

(10)

with AN D 1, one must find the roots of the denominator
polynomial. This may give numerical problems. Two re-
marks can be made. First of all the procedure can also be
applied by starting with selecting poles qi from a set A0 not
identical to the exact poles given by A. Even the dimensions
of the sets A and A0 need not be equal. The only restric-
tion would be that by the set A0 a very good Kautz model of
the original system is available. This leads us to the second
remark that we can start from the roots of the denominator
polynomial even if in itself this procedure might not be very
stable. In order to obtain a stable model however, it is re-
quired that the roots obtained from the polynomial are within
the unit circle. As a side remark we mention that in this case
we would not select the poles by calculating wmn according
to (7) but rather by

wŁ
mn D 1

2³ j

I
HŁ.z/8NC1�m.z/

dz

z
(11)

and splitting 8 in a sum of terms z=.z � qi /.
Our preliminary results suggest that the presented model

order reduction technique can be valuable to obtain a first and
numerically well-conditioned step in a more profound model
order reduction scheme. In the second step, one can use
existing methods for model reduction which allow adapting
not only the zeros but also the poles of the model.
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