Journal article Open Access

Rational Approximation for Solving an Implicitly Given Colebrook Flow Friction Equation

Praks, Pavel; Brkić, Dejan


DCAT Export

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#">
  <rdf:Description rdf:about="https://zenodo.org/record/3607210">
    <rdf:type rdf:resource="http://www.w3.org/ns/dcat#Dataset"/>
    <dct:type rdf:resource="http://purl.org/dc/dcmitype/Text"/>
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/3607210</dct:identifier>
    <foaf:page rdf:resource="https://zenodo.org/record/3607210"/>
    <dct:creator>
      <rdf:Description rdf:about="http://orcid.org/0000-0002-3913-7800">
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">0000-0002-3913-7800</dct:identifier>
        <foaf:name>Praks, Pavel</foaf:name>
        <foaf:givenName>Pavel</foaf:givenName>
        <foaf:familyName>Praks</foaf:familyName>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description rdf:about="http://orcid.org/0000-0002-2502-0601">
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">0000-0002-2502-0601</dct:identifier>
        <foaf:name>Brkić, Dejan</foaf:name>
        <foaf:givenName>Dejan</foaf:givenName>
        <foaf:familyName>Brkić</foaf:familyName>
      </rdf:Description>
    </dct:creator>
    <dct:title>Rational Approximation for Solving an Implicitly Given Colebrook Flow Friction Equation</dct:title>
    <dct:publisher>
      <foaf:Agent>
        <foaf:name>Zenodo</foaf:name>
      </foaf:Agent>
    </dct:publisher>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2019</dct:issued>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2019-12-20</dct:issued>
    <owl:sameAs rdf:resource="https://zenodo.org/record/3607210"/>
    <adms:identifier>
      <adms:Identifier>
        <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/3607210</skos:notation>
        <adms:schemeAgency>url</adms:schemeAgency>
      </adms:Identifier>
    </adms:identifier>
    <owl:sameAs rdf:resource="https://doi.org/10.3390/math8010026"/>
    <dct:description>The empirical logarithmic Colebrook equation for hydraulic resistance in pipes implicitly considers the unknown flow friction factor. Its explicit approximations, used to avoid iterative computations, should be accurate but also computationally efficient. We present a rational approximate procedure that completely avoids the use of transcendental functions, such as logarithm or non-integer power, which require execution of the additional number of floating-point operations in computer processor units. Instead of these, we use only rational expressions that are executed directly in the processor unit. The rational approximation was found using a combination of a Padé approximant and artificial intelligence (symbolic regression). Numerical experiments in Matlab using 2 million quasi-Monte Carlo samples indicate that the relative error of this new rational approximation does not exceed 0.866%. Moreover, these numerical experiments show that the novel rational approximation is approximately two times faster than the exact solution given by the Wright omega function.</dct:description>
    <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/>
    <dct:accessRights>
      <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess">
        <rdfs:label>Open Access</rdfs:label>
      </dct:RightsStatement>
    </dct:accessRights>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://zenodo.org/record/3607210"/>
      </dcat:Distribution>
    </dcat:distribution>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL>https://doi.org/10.3390/math8010026</dcat:accessURL>
        <dcat:byteSize>1169138</dcat:byteSize>
        <dcat:downloadURL>https://zenodo.org/record/3607210/files/article.pdf</dcat:downloadURL>
        <dcat:mediaType>application/pdf</dcat:mediaType>
      </dcat:Distribution>
    </dcat:distribution>
  </rdf:Description>
</rdf:RDF>
12
21
views
downloads
Views 12
Downloads 21
Data volume 24.6 MB
Unique views 12
Unique downloads 21

Share

Cite as