Dataset Open Access

Datasets and Supporting Materials for the IPIN 2019 Competition Track 3 (Smartphone-based, off-site)

Antonio Ramón Jiménez Ruiz; Antoni Perez-Navarro; Antonino Crivello; Germán Martín Mendoza-Silva; Fernando Seco; Miguel Ortiz; Johan Perul; Joaquín Torres-Sospedra


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/672944a9-915f-4dd9-9920-c523d28109d1/2019_IPIN_Competition_Track03.zip"
      }, 
      "checksum": "md5:cbe3a1c4e60f6f17bb42d91c02d8cc57", 
      "bucket": "672944a9-915f-4dd9-9920-c523d28109d1", 
      "key": "2019_IPIN_Competition_Track03.zip", 
      "type": "zip", 
      "size": 313186746
    }
  ], 
  "owners": [
    48988
  ], 
  "doi": "10.5281/zenodo.3606765", 
  "stats": {
    "version_unique_downloads": 125.0, 
    "unique_views": 337.0, 
    "views": 394.0, 
    "version_views": 394.0, 
    "unique_downloads": 125.0, 
    "version_unique_views": 337.0, 
    "volume": 140307662208.0, 
    "version_downloads": 448.0, 
    "downloads": 448.0, 
    "version_volume": 140307662208.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.3606765", 
    "conceptdoi": "https://doi.org/10.5281/zenodo.3606764", 
    "bucket": "https://zenodo.org/api/files/672944a9-915f-4dd9-9920-c523d28109d1", 
    "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.3606764.svg", 
    "html": "https://zenodo.org/record/3606765", 
    "latest_html": "https://zenodo.org/record/3606765", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.3606765.svg", 
    "latest": "https://zenodo.org/api/records/3606765"
  }, 
  "conceptdoi": "10.5281/zenodo.3606764", 
  "created": "2020-03-24T08:28:49.312228+00:00", 
  "updated": "2021-06-15T11:01:54.921615+00:00", 
  "conceptrecid": "3606764", 
  "revision": 6, 
  "id": 3606765, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.3606765", 
    "version": "1.0", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "title": "Datasets and Supporting Materials for the IPIN 2019 Competition Track 3 (Smartphone-based, off-site)", 
    "related_identifiers": [
      {
        "scheme": "doi", 
        "identifier": "10.5281/zenodo.3606764", 
        "relation": "isVersionOf"
      }
    ], 
    "notes": "We would like to thank ISTI-CNR for sponsoring the competition track with an award for the winning team.\n\nWe are also grateful to Francesco Potort\u00ec, Sangjoon Park and the ISTI-CNR team for their invaluable help in organizing and\u00a0promoting the IPIN competition and conference. Parts of this work were carried\u00a0out with the financial support received from projects and grants: REPNIN+ network\u00a0(TEC2017-90808-REDT), LORIS (TIN2012-38080-C04-04), TARSIUS\u00a0(TIN2015-71564-C4-2-R, MINECO/FEDER), SmartLoc(CSIC-PIE Ref.201450E011),\u00a0GEO-C (Project ID: 642332, H2020-MSCA-ITN-2014, Marie Sklodowska-Curie Action:\u00a0Innovative Training Networks) and A-WEAR (Project ID: 813278, H2020-MSCA-ITN-2018, Marie Sklodowska-Curie Action:\u00a0Innovative Training Networks).", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "3606764"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "3606765"
          }
        }
      ]
    }, 
    "communities": [
      {
        "id": "ipin"
      }
    ], 
    "grants": [
      {
        "code": "813278", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::813278"
        }, 
        "title": "A network for dynamic WEarable Applications with pRivacy constraints", 
        "acronym": "A-WEAR", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }, 
      {
        "code": "642332", 
        "links": {
          "self": "https://zenodo.org/api/grants/10.13039/501100000780::642332"
        }, 
        "title": "Joint Doctorate in Geoinformatics - Enabling Open Cities", 
        "acronym": "GEO-C", 
        "program": "H2020", 
        "funder": {
          "doi": "10.13039/501100000780", 
          "acronyms": [], 
          "name": "European Commission", 
          "links": {
            "self": "https://zenodo.org/api/funders/10.13039/501100000780"
          }
        }
      }
    ], 
    "keywords": [
      "Indoor Positioning", 
      "Indoor Navigation", 
      "Competition datasets", 
      "Kalman filter", 
      "Particle filter", 
      "RF Fingerprinting", 
      "Pedestrian Dead Reckoning", 
      "Map Matching", 
      "Sensor Fusion"
    ], 
    "publication_date": "2019-10-01", 
    "creators": [
      {
        "orcid": "0000-0001-9771-1930", 
        "affiliation": "Centre for Automation and Robotics (CAR), CSIC-UPM", 
        "name": "Antonio Ram\u00f3n Jim\u00e9nez Ruiz"
      }, 
      {
        "orcid": "0000-0002-7037-0635", 
        "affiliation": "Faculty of Computer Sciences, Multimedia and Telecommunication, Internet Interdisciplinary Institute (IN3), Universitat Oberta de Catalunya", 
        "name": "Antoni Perez-Navarro"
      }, 
      {
        "orcid": "0000-0001-7238-2181", 
        "affiliation": "ISTI - CNR", 
        "name": "Antonino Crivello"
      }, 
      {
        "orcid": "0000-0003-2744-0236", 
        "affiliation": "Institute of New Imaging Technologies, Universiat Jaume I", 
        "name": "Germ\u00e1n Mart\u00edn Mendoza-Silva"
      }, 
      {
        "orcid": "0000-0002-2922-2710", 
        "affiliation": "Centre for Automation and Robotics (CAR), CSIC-UPM", 
        "name": "Fernando Seco"
      }, 
      {
        "affiliation": "IFSTTAR, AME, GEOLOC", 
        "name": "Miguel Ortiz"
      }, 
      {
        "affiliation": "IFSTTAR, AME, GEOLOC", 
        "name": "Johan Perul"
      }, 
      {
        "orcid": "0000-0003-4338-4334", 
        "affiliation": "Institute of New Imaging Technologies, Universiat Jaume I", 
        "name": "Joaqu\u00edn Torres-Sospedra"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "type": "dataset", 
      "title": "Dataset"
    }, 
    "description": "<p>This package contains the datasets and supplementary materials used in the IPIN 2019 Competition (Pisa, Italy).</p>\n\n<p><strong>Contents:</strong></p>\n\n<ol>\n\t<li>IPIN2019_Call4Competition:&nbsp;Call for competition and main rules</li>\n\t<li>IPIN2019_Track03_TechnicalAnnex:&nbsp;Technical annex describing the Track 3 of the competition.</li>\n\t<li>01-Logfiles:&nbsp;This folder contains a subfolder with the 50 (40 + 10) training logfiles,&nbsp;a subfolder with the 9&nbsp;validation logfiles, and a subfolder&nbsp;with the 1 blind evaluation logfile as provided to competitors.</li>\n\t<li>02-Supplementary_Materials:&nbsp;This folder contains the Matlab/octave parser, the raster maps, the&nbsp;vector maps and the visualization of the training routes.</li>\n\t<li>03-Evaluation:&nbsp;This folder contains the scripts used to calculate the competition&nbsp;metric, the 75th percentile on the 99 evaluation points. The ground&nbsp;truth is also provided in MatLab format and as a CSV file. Since the&nbsp;results must be provided with a 2Hz freq. starting from apptimestamp 0,&nbsp;the GT includes the closest timestamp matching the timing provided&nbsp;by competitors.</li>\n</ol>\n\n<p><strong>Please, cite the following works when using the datasets included in this package:</strong></p>\n\n<ul>\n\t<li>Jim&eacute;nez, A. R.; Perez-Navarro, A.; Crivello, A.; Mendoza-Silva, G.; Ortiz, M.; Perul, J.; &nbsp;Seco, F. and Torres-Sospedra, J. Datasets and Supporting Materials&nbsp;for the IPIN 2019 Competition Track 3 (Smartphone-based, off-site), Zenodo 2019. <a href=\"http://dx.doi.org/10.5281/zenodo.3606765\">http://dx.doi.org/10.5281/zenodo.3606765</a>&nbsp;&nbsp; &nbsp;</li>\n\t<li>Potorti, F.; Park, S.; Palumbo, F.; Girolami, M.; Barsocchi, P.; Lee, S.; Torres-Sospedra, J.; Jimenez Ruiz, A. R.; Perez-Navarro, A.; Mendoza-Silva, G. M.; Seco, F.; Ortiz, M.; Perul, J.; Renaudin, V.; Kang, H.; Park, S. Y.; Lee, J. H.; Park, C. G.; Ha, J.; Han, J.; Park, C.; KIM, K.; Lee, Y.; GYE, S.; Lee, K.; Kim, E.; Choi, J.-S.; Choi, Y.-S.; Talwar, S.; Cho, S. Y.; Ben-Moshe, B.; Sansano, E.; Chidlovskii, B.; Kronenwett, N.; Prophet, S.; Landay, Y.; Marbel, R.; Peng, A.; Wu, B.; MA, C.; Poslad, S.; Selviah, D.; Wu, W.; Ma, Z.; Zhang, W.; Wei, D.; Yuan, H.; Jiang, J.-B.; Liu, J.-W.; Su, K.-W.; Leu, J.-S.; Nishiguchi, K.; Bousselham, W.; Uchiyama, H.; Thomas, D.; Shimada, A.; Taniguchi, R.-I.; Cort&eacute;s, V.; Lungenstrass, T.; Ashraf, I.; Lee, C.; Usman Ali, M.; Im, Y.; Kim, G.; Eom, J.; Hur, S.; Park, Y.; Opiela, M.; Moreira, A.; Nicolau, M. J.; Pend&atilde;o, C.; Silva, I.; Meneses, F.; Costa, A.; Trogh, J.; Plets, D.; Chien, Y.-R.; Chang, T.-Y.; Fang, S.-H.; Tsao, Y. The IPIN 2019 Indoor Localisation Competition - Description and Results IEEE Access Vol. 8, pp. 206674-206718, 2020.&nbsp;https://doi.org/10.1109/ACCESS.2020.3037221</li>\n</ul>\n\n<p><strong>Additional information can be found at:</strong></p>\n\n<ul>\n\t<li><a href=\"http://evaal.aaloa.org/2018/call-for-competitions\">http://evaal.aaloa.org/2019/call-for-competitions</a></li>\n</ul>\n\n<p><strong>For any further questions about the database and this competition track, please contact:&nbsp;</strong></p>\n\n<ul>\n\t<li>Joaqu&iacute;n Torres (<a href=\"mailto:jtorres@uji.es?subject=IPIN%202016%20Competition%20Dataset%20(Zenodo)\">jtorres@uji.es</a>,<a href=\"mailto:torres@ubikgs.com?subject=Contact%20from%20Zenodo%203606765\">torres@ubikgs.com</a>) UBIK Geospatial Solutions S.L., Spain<br>\n\tInstitute of New Imaging Technologies, Universitat Jaume I, Spain.&nbsp;</li>\n\t<li>Antonio R. Jim&eacute;nez (<a href=\"mailto:antonio.jimenez@csic.es?subject=IPIN%202016%20Competition%20Dataset%20(Zenodo)\">antonio.jimenez@csic.es</a>) Center of Automation and Robotics (CAR)-CSIC/UPM, Spain.&nbsp;</li>\n</ul>"
  }
}
394
448
views
downloads
All versions This version
Views 394394
Downloads 448448
Data volume 140.3 GB140.3 GB
Unique views 337337
Unique downloads 125125

Share

Cite as