
Assessing software defect
prediction on WLCG software

A study with Unlabelled datasets and Machine Learning Techniques

Elisabetta Ronchieri, Marco Canaparo, Davide Salomoni, Barbara Martelli

INFN CNAF, Bologna, Italy

CHEP 2019, Adelaide, November 5, 2019

Outline

• Context

• Experimental Settings

• Results

• Conclusions

November 05, 2019CHEP 2019, Adelaide 2

Context
Experimental settings
Results
Conclusions

Machine Learning in Software Engineering (SE)

• Machine Learning (ML) may help in various SE tasks, such as software defects prediction
and estimation and test code generation.

• To apply ML techniques, input data have to be properly preprocessed and collected in
software datasets.

• Software datasets are a collections of:

• instances, i.e. modules, such as files, classes and functions;

• features, i.e. software metrics.

• In SE practice, datasets may lack essential information, such as defectiveness

• not available in new software projects (historical data and software datasets are not available);

• not well traced in an existing software projects (e.g. the dataset does not include the class name)

November 05, 2019CHEP 2019, Adelaide 3

Context
Experimental settings
Results
Conclusions

Why this study?

• WLCG uses a variety of software, much of which adopts devops procedures in their
development and maintenance phases.

• Traditional software metrics, e.g. cyclomatic complexity metric and lines of code
metric, are monitored over releases

• but no particular analysis is usually performed on these data.

• Documentation related to changes in code, like release notes, is not used to predict
defectiveness

• lack of a comprehensive study about practical aspects of software analytics models

November 05, 2019CHEP 2019, Adelaide 4

We do have plenty of data, let’s try to extract some knowledge from them!

Context
Experimental settings
Results
Conclusions

Objectives

• To test the usefulness of ML techniques in WLCG domain:

• identifying pieces of code that require particular attention

• To build a prediction model on unlabelled datasets:

• using Geant4 unlabelled datasets collected with Imagix 4D

• using CLAMI [1] and CLAMI+ [2] approaches that label modules in the datasets

• using a set of ML techniques to predict defectiveness in modules

• To identify the set of software metrics that can be used without selecting a
priori-metric thresholds.

November 05, 2019CHEP 2019, Adelaide 5

[1] J. Nam, S. Kim, 2015. CLAMI: Defect Prediction on Unlabeled Datasets, In Proc. 30th IEEE/ACM International Conference on Automated Software
Engineering
[2] M. Yan, X. Zhang, C. Liu, L. Xu, M. Yang, D. Yang, 2017. Automated change-prone class prediction on unlabeled dataset using unsupervised method, In
Information and Software Technology, 92, 1-16

Context
Experimental settings
Results
Conclusions

Approaches to Unlabeled Software Datasets Prediction

November 05, 2019CHEP 2019, Adelaide 6

Approaches Strength/Limitations

Within-project defect prediction High precision/uses a set of metrics specific for the analyzed
project -> difficult to generalize

Cross-project defect prediction Useful for projects without labeled datasets/uses metrics
from other projects, doesn’t consider different probability
distributions among datasets

Expert-based defect prediction High precision/always requires human experts

Threshold-based defect prediction Some step is automated/needs to decide metrics thresholds in
advance

Clustering, LAbeling, Metric
selection, Instance selection
(CLAMI)

Automatic, no manual effort, works with unlabelled
datasets/metric values are not always comparable may
introduce bias, depends on thresholds

CLAMI + normalizes metrics values/depends on thresholds

Context
Experimental settings
Results
Conclusions

Unlabelled and Labelled Datasets

November 05, 2019CHEP 2019, Adelaide 7

Metric 1 Metric 2 Metric 3 Metric M Label

Instance 1 10 11 4 ... 6 ?

Instance 2 23 10 15 ... 14 ?

Instance 3 15 17 4 ... 8 ?

....

Instance N 7 9 21 ... 13 ?

Buggy

CleanC++ Class 2

C++ Class 3

C++ Class N

C++ Class 1

McCabe
Tot.Complexity

#Lines in
Subsystem

Chidamber
Kemerer
Depth of
Inheritance

Clean

Unlabelled datasets are the vast majority of software datasets.
• The extraction of the complete set of features (defectiveness included) implies effort and time.
• It is not easy to select tools that measure software characteristics

We need an automated way to label unlabelled datasets in order to be able to apply
well established Supervised ML techniques

Level in
Hierarchy

Context
Experimental settings
Results
Conclusions

CLAMI: evaluating metrics and instance labelling

The key idea of the CLAMI approach is to label instances by using the magnitude of metric values

The intuition of this labelling process is based on the defect proneness tendency of typical defect
prediction datasets:

 higher complexity causes more defect proneness

November 05, 2019CHEP 2019, Adelaide 8

Instance
Metric 1 Metric 2 Metric 3 Metric 4 Metric 5 Label

A 10 11 4 6 8 ?

D 23 10 15 14 10 ?

E 15 17 4 8 5 ?

F 9 10 9 6 3 ?

G 11 13 15 5 8 ?

H 14 10 17 9 0 ?

I 7 9 21 13 9 ?

Metric evaluation: cut-off
threshold (median)

Identify Higher Values: greater
than the threshold (yellow cells)

23

15

14

11

17

13

17

21

14

9

13

10

9

Context
Experimental settings
Results
Conclusions

CLAMI: Clustering Instances

November 05, 2019CHEP 2019, Adelaide 9

Clusters divided into 2 groups:

1. Clean for K in the bottom half

2. Buggy for K in the top half

The instances that have larger value on all
metrics are more likely to be defective [3]

Instance Metric
1

Metric
2

Metric
3

Metric
4

Metric
5

Label

A 10 11 4 6 8 ?

D 23 10 15 14 10 ?

E 15 17 4 8 5 ?

F 9 10 9 6 3 ?

G 11 13 15 5 8 ?

H 14 10 17 9 0 ?

I 7 9 21 13 9 ?

23

15

14

11

17

13

17

21

14

9

13

10

9

[3] M. D'Ambros, M. Lanza, R. Robbes, Evaluating defect prediction approaches: a benchmark and an
extensive comparison, Empirical software Engineering, vol. 17, no. 4{5, pp. 531{577,2012.

K = Number of metrics for each instance whose values are
greater than the median for each metric (Higher Values) Instances K

A K= 1

D K = 3

E K = 2

F K = 0

G K = 1

H K = 3

I K = 3 D
H

E

I

A G

F

K=0

K=1

K=2

K=3

Clean

Buggy

Context
Experimental settings
Results
Conclusions

November 05, 2019CHEP 2019, Adelaide 10

Metric selection aimed at selecting most informative metrics -> erase
metrics that violate the defect-proneness tendency (grey cells) [2]:

• D is Buggy, but Metric2 = 10 is not greater than Median2

• E is Clean, but Metric1 = 15 is greater than Median1

Instance
Metric

1
Metric

2
Metric

3
Metric

4
Metric

5
Label

A 10 11 4 6 8 ?

D 23 10 15 14 10 ?

E 15 17 4 8 5 ?

F 9 10 9 6 3 ?

G 11 13 15 5 8 ?

H 14 10 17 9 0 ?

I 7 9 21 13 9 ?Buggy

Clean

Clean

Clean

Clean

Buggy

Buggy

M 1 M 2 M 3 M 4 M 5

MVS
1

7

5

7

1

7

0

7

0

7

Metrics with the minimum MVS are
selected for the Training dataset.

Instance M 4 M 5 Label

A 6 8

D 14 10

E 8 5

F 6 3

G 5 8

H 9 0

I 13 9 Buggy

Clean

Clean

Clean

Clean

Buggy

Buggy

We calculate the Metric Violation Score as MVSj = the
ratio between the number of violation in the j-th metric
and the number of metric values in the j-th metric

CLAMI: Metric and
Instance Selection

Context
Experimental settings
Results
Conclusions

Experimental Configuration

34 Geant4 multi-version datasets (482 modules for each version; 66 software metrics)
are considered for the preprocessing activity: datasets contains the same classes and
the same software metrics.

November 05, 2019CHEP 2019, Adelaide 11

Context
Experimental settings
Results
Conclusions

Workflow

Input:

• U = set of unlabelled instances

• C = set of machine learning techniques

Output:

• Average P (P = set of performance indicators)

• Test dataset prediction

November 05, 2019CHEP 2019, Adelaide 12

Process:

1. Randomly split dataset
in training (67%) dataset
and test (33%) dataset

2. Apply CLAMI/CLAMI+-
based approach to label
training dataset

3. Construct classifier by
applying c Є C to
training dataset

4. Assess classifier

5. Predict test dataset

Context
Experimental settings
Results
Conclusions

Performance Indicators

Buggy Clean

Buggy
True
Positive
(TP)

False
Negative
(FN)

Clean
False
Positive
(FP)

True
Negative
(TN)

November 05, 2019CHEP 2019, Adelaide 13

[4] Landis, J.R.; Koch, G.G. (1977). The measurement of observer agreement for categorical data. Biometrics 33 (1): 159{174

Prediction

A
ct

u
al

 v
al

u
e

• Kappa statistic is a metric (whose value is Є [0,1])
that compares an Observed accuracy with the
random classifier accuracy [4].

• It determines how much better a classifier is
performing over the performance of a classifier that
simply guesses at random.

• If Kappa statistic Є [0.81, 0.99], then the value
indicates an almost perfect agreement.

• Accuracy is the percentage of instances correctly
classified as either buggy or clean

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

Each measure can be defined on the basis of the confusion matrix below. Actual

Values are derived from the software documentation (e.g. release notes and
metrics).

To assess our approach, we have
checked the predictions obtained
against the software
documentation (release notes).

Context
Experimental settings
Results
Conclusions

Clustering Phase: CLAMI B%

• B% represents the ratio between the number of buggy modules and total modules.

• Low B% values identify classes with higher clean than buggy.

• The modules characterized by larger values on all metrics are more likely defective.

November 05, 2019CHEP 2019, Adelaide 14

Context
Experimental settings
Results
Conclusions

Clustering Phase: CLAMI B% - CLAMI+ B%

• ClusteringCLAMI : the violation table includes either 0 or 1 values; 1 shows a metric violation according to
the metric cut-off value

• ClusteringCLAMI+: the violation table includes continuous values from 0 to 1 determined by a sigmoid
function

November 05, 2019CHEP 2019, Adelaide 15

Context
Experimental settings
Results
Conclusions

Selected metrics

• Selected Metrics: [45%,77%]

• Average Selected Metrics: 38 out of
66

• N. Releases: 34

• Tried with 9 Cutoffs: percentile at 10,
20, ... , 90 – referred to the #Violations
of defect-proneless tendency which
determine metric erasure

• Metrics Categories:size, complexity,
maintainability, object orientation

• The smaller the N. of Selected
Metrics, the bigger the percentile.

November 05, 2019CHEP 2019, Adelaide 16

Context
Experimental settings
Results
Conclusions

Comparing Models Statistics

• ML techniques: classication and regression algorithms on training datasets
with 10-fold cross validation to predict defectiveness on test datasets.

• Kappa statistic < 0.81 when Accuracy < 90%

• Kappa statistic in these cases was always in the range [0.82, 95]

November 05, 2019CHEP 2019, Adelaide 17

Context
Experimental settings
Results
Conclusions

Conclusions

• At the moment our approach uses CLAMI, its contribution is two-fold:

• it automatically labels dataset based on the magnitude of metric values

• it can be easily automated and used by non ML experts.

• In our testbed Bagging, LMT, J48 and AdaBoost performed well in terms of
accuracy and kappa.

• learning techniques can be complementary to existing SE tools and methodologies to
address SE tasks.

• In the near future, we are going to experiment other clustering techniques
and define a dictionary for code changes.

November 05, 2019CHEP 2019, Adelaide 18

Context
Experimental settings
Results
Conclusions

Thanks and Questions

Be curious! Have fun!
Acknowledgements:

• INFN CNAF for funds

• Imagix Corp. for Imagix4D license

• Doina Cristina Duma for VM

• Daniele Cesini for GPU-onboard resource

Contact: elisabetta.ronchieri@cnaf.infn.it

November 05, 2019CHEP 2019, Adelaide 19

November 05, 2019CHEP 2019, Adelaide 20

Backup slides

Metrics

https://www.imagix.com/user_guide/software-metrics.html

November 05, 2019CHEP 2019, Adelaide 21

https://www.imagix.com/user_guide/software-metrics.html

Testbed Description

The experimental Testbed was composed by 2 Machines:

November 05, 2019CHEP 2019, Adelaide 22

Physical Machine Virtual Machine

• CPU: 2xIntel(R)E5-2640v2
• @2.00GHz
• Number of Cores: 32 (HT)
• GPU: 2 x NVIDIA TeslaK40m
• Memory: 128GB RAM.
• Operating System: CentOS
• Linux release 7.4.1708.
• Python: 2.7.5
• Jupyter-notebook: 5.7.8

• CPU: 16 V CPU
• Disk: 40 GB
• Memory: 32 GB RAM
• Operating System: Ubuntu
• Linux release 18.04
• Python: 3.6.7
• R: 3.5.2
Jupyter-notebook: 5.7.4 hosted on an
hypervisor with the following
characteristics:
• CPU: 2 x 12 AMD
• Opteron(TM) Processor 6238
• RAM: 80GB

Preprocessing Time (VM)

N. Permutations: 500

N. Releases: 34

N. Cutoff (i.e. percentile): 10

N. Days: 8

Total Preprocessing Time: 11928 [min]

Average Time per permutation: 23 [min]

November 05, 2019CHEP 2019, Adelaide 23

ML Techniques Tested

November 05, 2019CHEP 2019, Adelaide 24

ML techniques ML techniques

AdaBoost Dl4jMlpClassifier

J48 Naïve Baise

Bagging MultiClassClassifier

LMT Logistic

Random Forest SMO

LogitBoost Multilayer Perceptron

• Frameworks: Weka, R, scikit-learn, Theano

