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Machine Learning in Software Engineering (SE)

• Machine Learning (ML) may help in various SE tasks, such as software defects prediction 
and estimation and test code generation.

• To apply ML techniques, input data have to be properly preprocessed and collected in 
software datasets.

• Software datasets are a collections of:

• instances, i.e. modules, such as files, classes and functions;

• features, i.e. software metrics.

• In SE practice, datasets may lack essential information, such as defectiveness

• not available in new software projects (historical data and software datasets are not available);

• not well traced in an existing software projects (e.g. the dataset does not include the class name)
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Why this study?

• WLCG uses a variety of software, much of which adopts devops procedures in their 
development and maintenance phases.

• Traditional software metrics, e.g. cyclomatic complexity metric and lines of code 
metric, are monitored over releases

• but no particular analysis is usually performed on these data.

• Documentation related to changes in code, like release notes, is not used to predict 
defectiveness

• lack of a comprehensive study about practical aspects of software analytics models
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We do have plenty of data, let’s try to extract some knowledge from them!
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Objectives

• To test the usefulness of ML techniques in WLCG domain:

• identifying pieces of code that require particular attention

• To build a prediction model on unlabelled datasets:

• using Geant4 unlabelled datasets collected with Imagix 4D

• using CLAMI [1] and CLAMI+ [2] approaches that label modules in the datasets

• using a set of ML techniques to predict defectiveness in modules

• To identify the set of software metrics that can be used without selecting a 
priori-metric thresholds.
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[1] J. Nam, S. Kim, 2015. CLAMI: Defect Prediction on Unlabeled Datasets, In Proc. 30th IEEE/ACM International Conference on Automated Software 
Engineering
[2] M. Yan, X. Zhang, C. Liu, L. Xu, M. Yang, D. Yang, 2017. Automated change-prone class prediction on unlabeled dataset using unsupervised method, In 
Information and Software Technology, 92, 1-16
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Approaches to Unlabeled Software Datasets Prediction
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Approaches Strength/Limitations

Within-project defect prediction High precision/uses a set of metrics specific for the analyzed 
project -> difficult to generalize

Cross-project defect prediction Useful for projects without labeled datasets/uses metrics 
from other projects, doesn’t consider different probability 
distributions among datasets

Expert-based defect prediction High precision/always requires human experts

Threshold-based defect prediction Some step is automated/needs to decide metrics thresholds in 
advance

Clustering, LAbeling, Metric
selection, Instance selection
(CLAMI)

Automatic, no manual effort, works with unlabelled
datasets/metric values are not always comparable may 
introduce bias, depends on thresholds

CLAMI + normalizes metrics values/depends on thresholds
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Unlabelled and Labelled Datasets
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Metric 1 Metric 2 Metric 3 .... Metric M Label

Instance 1 10 11 4 ... 6 ?

Instance 2 23 10 15 ... 14 ?

Instance 3 15 17 4 ... 8 ?

.... ... ... ... ... ... ...

Instance N 7 9 21 ... 13 ?

Buggy

CleanC++ Class 2

C++ Class 3

C++ Class N

C++ Class 1

McCabe 
Tot.Complexity

#Lines in 
Subsystem

Chidamber 
Kemerer 
Depth of 
Inheritance

Clean

Unlabelled datasets are the vast majority of software datasets.
• The extraction of the complete set of features (defectiveness included) implies effort and time.
• It is not easy to select tools that measure software characteristics

We need an automated way to label unlabelled datasets in order to be able to apply 
well established Supervised ML techniques

Level in 
Hierarchy
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CLAMI: evaluating metrics and instance labelling

The key idea of the CLAMI approach is to label instances by using the magnitude of metric values

The intuition of this labelling process is based on the defect proneness tendency of typical defect 
prediction datasets: 

 higher complexity causes more defect proneness
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Instance
Metric 1 Metric 2 Metric 3 Metric 4 Metric 5 Label

A 10 11 4 6 8 ?

D 23 10 15 14 10 ?

E 15 17 4 8 5 ?

F 9 10 9 6 3 ?

G 11 13 15 5 8 ?

H 14 10 17 9 0 ?

I 7 9 21 13 9 ?

Metric evaluation: cut-off 
threshold (median)

Identify Higher Values: greater 
than the threshold (yellow cells)
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CLAMI: Clustering Instances 
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Clusters divided into 2 groups: 

1. Clean for K in the bottom half

2. Buggy for K in the top half

The instances that have larger value on all 
metrics are more likely to be defective [3]

Instance Metric 
1 

Metric 
2

Metric 
3

Metric 
4

Metric
5

Label

A 10 11 4 6 8 ?

D 23 10 15 14 10 ?

E 15 17 4 8 5 ?

F 9 10 9 6 3 ?

G 11 13 15 5 8 ?

H 14 10 17 9 0 ?

I 7 9 21 13 9 ?
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17

21

14

9

13

10

9

[3] M. D'Ambros, M. Lanza, R. Robbes, Evaluating defect prediction approaches: a benchmark and an 
extensive comparison, Empirical software Engineering, vol. 17, no. 4{5, pp. 531{577,2012.

K = Number of metrics for each instance whose values are 
greater than the median for each metric (Higher Values) Instances K

A K= 1

D K = 3

E K = 2

F K = 0

G K = 1

H K = 3

I K = 3 D
H

E

I

A G

F

K=0

K=1

K=2

K=3

Clean

Buggy
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Metric selection aimed at selecting most informative metrics -> erase 
metrics that violate the defect-proneness tendency (grey cells) [2]:

• D is Buggy, but Metric2 = 10 is not greater than Median2

• E is Clean, but Metric1 = 15 is greater than Median1

Instance
Metric 

1 
Metric 

2
Metric 

3
Metric 

4
Metric

5
Label

A 10 11 4 6 8 ?

D 23 10 15 14 10 ?

E 15 17 4 8 5 ?

F 9 10 9 6 3 ?

G 11 13 15 5 8 ?

H 14 10 17 9 0 ?

I 7 9 21 13 9 ?Buggy

Clean

Clean

Clean

Clean

Buggy

Buggy

M 1 M 2 M 3 M 4 M 5

MVS
1

7

5

7

1

7

0

7

0

7

Metrics with the minimum MVS are
selected for the Training dataset.

Instance M 4 M 5 Label

A 6 8

D 14 10

E 8 5

F 6 3

G 5 8

H 9 0

I 13 9 Buggy

Clean

Clean

Clean

Clean

Buggy

Buggy

We calculate the Metric Violation Score as MVSj = the 
ratio between the number of violation in the j-th metric 
and the number of metric values in the j-th metric

CLAMI: Metric and 
Instance Selection



Context
Experimental settings
Results
Conclusions

Experimental Configuration

34 Geant4 multi-version datasets (482 modules for each version; 66 software metrics) 
are considered for the preprocessing activity: datasets contains the same classes and 
the same software metrics.
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Workflow

Input:

• U = set of unlabelled instances

• C = set of machine learning techniques

Output:

• Average P (P = set of performance indicators)

• Test dataset prediction
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Process:

1. Randomly split dataset 
in training (67%) dataset 
and test (33%) dataset

2. Apply CLAMI/CLAMI+-
based approach to label 
training dataset

3. Construct classifier by 
applying c Є C to 
training dataset

4. Assess classifier

5. Predict test dataset
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Performance Indicators

Buggy Clean

Buggy
True 
Positive 
(TP)

False
Negative
(FN)

Clean
False
Positive
(FP)

True
Negative
(TN)
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[4] Landis, J.R.; Koch, G.G. (1977). The measurement of observer agreement for categorical data. Biometrics 33 (1): 159{174
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• Kappa statistic is a metric (whose value is Є [0,1]) 
that compares an Observed accuracy with the 
random classifier accuracy [4].

• It determines how much better a classifier is 
performing over the performance of a classifier that 
simply guesses at random.

• If Kappa statistic Є [0.81, 0.99], then the value 
indicates an almost perfect agreement.

• Accuracy is the percentage of instances correctly 
classified as either buggy or clean 

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

Each measure can be defined on the basis of the confusion matrix below. Actual 

Values are derived from the software documentation (e.g. release notes and 
metrics). 

To assess our approach, we have 
checked the predictions obtained 
against the software 
documentation (release notes).
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Clustering Phase: CLAMI B%

• B% represents the ratio between the number of buggy modules and total modules.

• Low B% values identify classes with higher clean than buggy.

• The modules characterized by larger values on all metrics are more likely defective.
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Clustering Phase: CLAMI B% - CLAMI+ B%

• ClusteringCLAMI : the violation table includes either 0 or 1 values; 1 shows a metric violation according to 
the metric cut-off value

• ClusteringCLAMI+: the violation table includes continuous values from 0 to 1 determined by a sigmoid 
function
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Selected metrics

• Selected Metrics: [45%,77%]

• Average Selected Metrics: 38 out of 
66

• N. Releases: 34

• Tried with 9 Cutoffs: percentile at 10, 
20, ... , 90 – referred to the #Violations 
of defect-proneless tendency which 
determine metric erasure

• Metrics Categories:size, complexity, 
maintainability, object orientation

• The smaller the N. of Selected 
Metrics, the bigger the percentile.
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Comparing Models Statistics

• ML techniques: classication and regression algorithms on training datasets 
with 10-fold cross validation to predict defectiveness on test datasets.

• Kappa statistic < 0.81 when Accuracy < 90%

• Kappa statistic in these cases was always in the range [0.82, 95]
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Conclusions

• At the moment our approach uses CLAMI, its contribution is two-fold:

• it automatically labels dataset based on the magnitude of metric values

• it can be easily automated and used by non ML experts.

• In our testbed Bagging, LMT, J48 and AdaBoost performed well in terms of 
accuracy and kappa. 

• learning techniques can be complementary to existing SE tools and methodologies to 
address SE tasks.

• In the near future, we are going to experiment other clustering techniques 
and define a dictionary for code changes.
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Thanks and Questions

Be curious! Have fun!
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Backup slides



Metrics

https://www.imagix.com/user_guide/software-metrics.html
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https://www.imagix.com/user_guide/software-metrics.html


Testbed Description

The experimental Testbed was composed by 2 Machines:
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Physical Machine Virtual Machine

• CPU: 2xIntel(R)E5-2640v2
• @2.00GHz
• Number of Cores: 32 (HT)
• GPU: 2 x NVIDIA TeslaK40m
• Memory: 128GB RAM.
• Operating System: CentOS
• Linux release 7.4.1708.
• Python: 2.7.5
• Jupyter-notebook: 5.7.8

• CPU: 16 V CPU
• Disk: 40 GB
• Memory: 32 GB RAM
• Operating System: Ubuntu
• Linux release 18.04
• Python: 3.6.7
• R: 3.5.2
Jupyter-notebook: 5.7.4 hosted on an 
hypervisor with the following 
characteristics:
• CPU: 2 x 12 AMD
• Opteron(TM) Processor 6238
• RAM: 80GB



Preprocessing Time (VM)

N. Permutations: 500

N. Releases: 34

N. Cutoff (i.e. percentile): 10

N. Days: 8

Total Preprocessing Time: 11928 [min]

Average Time per permutation: 23 [min]
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ML Techniques Tested
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ML techniques ML techniques

AdaBoost Dl4jMlpClassifier

J48 Naïve Baise

Bagging MultiClassClassifier

LMT Logistic

Random Forest SMO

LogitBoost Multilayer Perceptron

• Frameworks: Weka, R, scikit-learn, Theano


