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Challenges in LHC

At the LHC proton beams collide at a frequency of 40 MHz
Extreme data rates of O(100 TB/s)

“Triggering” - Filter events to reduce data rates to manageable levels




The LHC big data problem

< K\
(4 2
N <
«*"& S
N D
v
1ns 1 pus 100 ms

Deploy ML algorithms very early

Challenge: strict latency constraints!



Field-Programmable Gate Array

Reprogrammable integrated circuits

Configurable logic blocks and embedded components

Flip-Flops (registers)
LUTs (logic)

DSPs (arithmetic)
Block RAMs (memory)

Massively parallel
Low power
Traditionally programmed with VHDL and Verilog

High-Level Synthesis (HLS) tools
Use C, C++, System C
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high level synthesis for machine learning

User-friendly tool to automatically build and optimize DL models for FPGAs:

- Reads as input models trained with standard DL libraries
- Uses Xilinx HLS software
- Comes with implementation of common ingredients (layers, activation functions, binary NN ...)
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hls 4 ml : features

The main idea: Store the full architecture and weights on chip

- Much faster access times
- For longer latency applications, weights storage in on-chip block memory is possible
- No loading weights from external source (e.g. DDR, PCle)

Limitations:

- Constraints on model size
- Not reconfigurable without reprogramming device

Solution: User controllable trade-off between resource usage and latency/throughput

- Tuned via “reuse factor”



hls 4 ml : exploiting FPGA hardware

Parallelization: Use reuse factor to tune the inference latency versus

utilization of FPGA resources

Can now be specified per-layer m

Quantization: Reduce precision of the calculations

Compression: Drop unnecessary weights (zero or close to zero) to reduce

the number of DSPs used

70% compression ~ 70% fewer DSPs

Reuse factor = 1, Kintex Ultrascale
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Parallelization

Longer latency

—=— Reuse Factor = 1
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3-layer pruned, Kintex Ultrascale A

~175 ns
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Replace floating/fixed-point with 1/2-bit arithmetics Real-valued

Networks

- Binary: 1-bit (arXiv:1602.02830)
- Ternary: 2-bits (arXiv:1605.04711)

Multiplications @ * w) as bit-flip operations: g;n;;})’rks

- Binary: res =w==07? -d : d;
- Ternal’yires=w==0?0:w==—1?—d:d;

Binary/ternary architecture:

- Binary/Ternary Dense Binary/Ternary dense
- Batch Normalization Binary/Ternary dense

- Binary/Ternary tanh activation m—» Batch Normalization

Binary/Ternary tanh 8

Batch Normalization



https://arxiv.org/abs/1602.02830
https://arxiv.org/abs/1605.04711

hls 4 ml : Jet tagging benchmark model

Input(16)

Multi-classification task:

- Discrimination between highly energetic (boosted) q, g, W, Z, t
initiated jets

Dense(64) + ReLU

- 16 inputs, 5 outputs Dense(32) + ReLU

Average accuracy ~ 0.75 L0 Nis4ml
—— gtagger, AUC = 93.8% Dense(32) + ReLU
-~ qtagger, AUC = 90.4%
—— w tagger, AUC = 94.6%
—— ztagger, AUC = 93.9%
—— ttagger, AUC = 95.8%
g 101 ‘ Dense(5) + Softmax
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Signal Efficiency



hls 4 ml : Jet tagging benchmark model

Run hyper-parameter bayesian optimization:

Recover performance with larger models

Binary: 16x448x224x224x5 (7x more neurons)

Ternary: 16x128x64x64x64x5 (2x more neurons + one more layer)

Number of neurons/layers, batch size, learning rate

ind Efficiency
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eamOPtimized binary

—— gtagger, AUC = 91.5%
—— qtagger, AUC = 88.4%
—— wtagger, AUC = 92.4%
—— ztagger, AUC = 90.2%
—— ttagger, AUC = 93.8%

Average acc: 0.72
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Optimized ternary

hisaml

Model Accuracy | Latency DSP BRAM | FF LUT
Base model 0.75 0.06 us 60% 0% 1% 7%
Optimized Binary | 0.72 0.21 us 0% 0% 7% 15%
Optimized Ternary | 0.72 0.11 us 0% 0% 1% 6%

Background Efficiency
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hils 4 ml : MNIST benchmark

Dense networks trained with the MNIST dataset

- 784 inputs (28x28 grayscale image), 10 outputs (digits)

Base model:

- 3 hidden layers with 128 neurons and RelLU activation

Binary/Ternary model:
- 3 hidden layers with batch normalization and binary/ternary tanh

Xilinx VU9P FPGA at 200 MHz, reuse factor 128

Model Accuracy Latency DSP BRAM | FF LUT
Dense model 0.97 2.6 us 21% 45% 12% | 33%
Binary dense model 0.93 2.6 us 0% 33% 7% 39%
Ternary dense model 0.95 2.6 us 0% 33% 7% | 40%
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hls 4 ml : current status

Supported architectures:
- DNN

- Support for very large layers m
- Zero-suppressed weights

- Binary and Ternary DNN K
- 1- or 2-bit precision with limited loss of performance
- Computation without using DSPs, only LUTs
- Convolutional NNs
- 1D and 2D with pooling
- Currently limited to very small layers, working on support for larger layers
Other:
- Batch normalization
- Merge layers (concatenation, addition, subtraction etc)
- Numerous activation functions

12



hls 4 ml : ongoing work

Convolutional layers

Support for “large” convolutional layers

Express convolution as matrix multiplication

im2col algorithm
Reuse “large” matrix multiplication algorithm from MLP

Quantized (binary and ternary) weights

Credit: Jennifer Ngadiuba, Sioni Paris Summers
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hls 4 ml : ongoing work

Convolutional layers

Depthwise separable convolution (axiv:1610.02357)

- First step: depthwise convolution
- Second step: pointwise convolution
- For 3x3 kernels this can yield 8-9 times less multiplications

LeanConvNet (arxiv:1904.06952)

- Depth-wise (block diagonal) operator operating on each
channel separately and 1x1 convolution
- 5-point convolution kernel

I:' Per-channel parameter
. 1x1 convolution
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Image source: Atul Pandey
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https://arxiv.org/abs/1610.02357
https://arxiv.org/abs/1904.06952
https://medium.com/@zurister/depth-wise-convolution-and-depth-wise-separable-convolution-37346565d4ec

hls 4 ml : ongoing work

Graph networks (GarNet)

- Distance-weighted GNN capable of learning irregular patterns of sparse data (arXiv:1902.07987)
- Suitable for irregular particle-detector geometries
- Early stage of HLS implementation
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Credit: Abhijay Gupta, Yutaro liyama, Jan Kieseler and Maurizio Pierini

Four
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https://arxiv.org/abs/1902.07987

hls 4 ml : future directions
Multi-FPGA inference < J[FFIT

- Main idea: place layers onto multiple FPGAs and pipeline the execution

Leverage Galapagos framework (nttps:/github.com/tarafdar/galapagos)

- “..a framework for creating network FPGA clusters in a heterogeneous cloud data center.”
- Given a description of how a group of FPGA kernels are to be connected, creates a ready-to-use
network device

- Possible to use MPI programming model

Credit: Naif Tarafdar, Phil Harris
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https://github.com/tarafdar/galapagos

hls 4 ml : other future developments

Recurrent Neural Networks (RNNs)
Boosted decision trees
Autoencoders

HLS implementations beyond Xilinx/Vivado

- Quartus HLS Compiler for Intel/Altera FPGAs
- Mentor Catapult HLS

Inference engine for CPUs based on his4ml
- Targeting integration with CMSSW

Many more...
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hls 4 ml in production in HEP

CMS designing DL-based triggers for Run lll, using hls4ml for deployment

- Reduce muon rate by factor 4 (link)
- Run inference in 160ns on currently used boards (Virtex 7)

NN firmware resource usage

« Converted an earlier version of NN using HLS4ML

= 80 input nodes, 3 hidden layers with 64/32/16 nodes, and 1 output node.

- Pruning is applied to remove 50% of the unimportant synapses

- Use <18,8>-precision for inputs & output. 8 integer bits, 18 total bits
 Xilinx Virtex-7 target FPGA (as in the MTF7 board)

- Clock of 250 MHz
* Currently re-optimizing the NN structure for less resource usage.

- Asmaller version with 30/25/20 nodes uses only 50% DSP resource.

Utilization Estimates Performance Estimates

- Summary - Timing (ns)
Name | BRAM_18K DSP48E| FF | LUT 5 Summary
DSP__ . - . = Clock | Target| Estimated| Uncertainty|
Expression = 2 0 ap_clkl 4.00 3.49 0.50
FIFO 2 B D E -
Instance 56/ 2822/315515/112745 - Latency (clock cycles)
Memory = = - - = Summary
Multiplexer - - _ 36 Latency | Interval
Register = = 4689 - minl may minl may Type
Total 56 2822 320204112787 | 20 40 1 1lfunctionl |
Utilization (%) 1 78 36 26

~160ns fixed latency

CPAD Workshop 2018

Dec 9, 2018

hw.ila2 k

Dashboard Options

NN in MTF7 hardware

« Reading inputs corresponding to 8 simulated muons and calculating their pr.

* HLS IP core target frequency 250 MHz (which agrees with design frequency)

Waveform -
Q+ =&/ p» BB Q@ Q X of KN e > o of L

ILAStatus: Idie

Name ) ) . Result Valid every clock

8 muon outputs

Fixed Latency 40 clocks @ 250 MHz

Expect latency of ~40 + N,,0ns ClOCks
99% percentile of tracks to fit in both endcaps is 5. Per processor 5/12 = 0.4

CPAD Workshop 2018
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https://indico.fnal.gov/event/18104/session/23/contribution/71

Conclusions

his4ml - software package for translation of trained neural networks into synthesizable
FPGA firmware

- Tunable resource usage latency/throughput
- Fast inference times, O(1us) latency

More information:

-  Website: https://hls-fpga-machine-learning.github.io/hls4ml/
- Paper: https://arxiv.org/abs/1804.06913
- Code: https://github.com/hls-fpga-machine-learning/hls4ml

his 4 ml


https://hls-fpga-machine-learning.github.io/hls4ml/
https://arxiv.org/abs/1804.06913
https://github.com/hls-fpga-machine-learning/hls4ml

Bonus
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hls 4 ml : mini tutorial

Keras

Install: € ONNX

pip install hls4ml

(fornow: git clone .. && cd hls4ml && pip install .) OnnxModel : models/my model.onnx
. InputData: data/my input features.dat
Translate to HLS: OutputPredictions : data/my predictions.dat
OutputDir: my project dir
ProjectName : myproject
Run synthesys etc.: XilinxPart: xckull5-flvb2104-2-i
ClockPeriod: 5

hls4ml convert -c my model.yml

hls4ml build -p my project dir -a
IOType: 1o parallel

Get help: HLSConfig:
hls4ml <command> -h Model :
Precision: ap fixed<lé6, 6>
...or visit: https://fastmachinelearning.org/hls4ml/ ReuseFactor : 2 \
Strategy: Resource
or contact us at his4ml.help@gmail.com 7 —
Degree of Default precision
parallelism Support for large models (weights, biases.. ),


https://fastmachinelearning.org/hls4ml/
mailto:hls4ml.help@gmail.com

hls 4 ml : Advanced configuration example

Specif
layer [

KerasJson: models/my model.json
KerasH5: models/my model weights.hb5
OutputDir: my project dir
ProjectName : myproject

XilinxPart: xckullb-flvb2104-2-1i
ClockPeriod: 5

IOType: io parallel
HLSConfig:
Model :
Precision: ap fixed<l6, 6>
ReuseFactor: 8
Strategy: Resource \
LayerName :
Applies to the
whole model

fcl relu:
//)' Precision:

. weight: ap fixed<18, 6>
¢ to this bias: ap fixed<l6, 8>
y hame result: ap fixed<18, 8>
ReuseFactor: 4

Applies to all other
Dense layers

LayerType :
Dense:
Precision:
default: ap fixed<18,8>
weight: ap fixed<14, 6>
ReuseFactor: 2
Activation:
Precision: ap fixed<1Z2,8>

!

Applies to all
Activation layers
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hls 4 ml : ongoing work

Boosted decision trees

- BDTs have been popular for a long time in HEP reconstruction and analysis
- Suitable for highly parallel implementation in FPGAs
- Implementation in his4ml optimised for low latency
- No ‘if/else’ statement in FPGAs — evaluate all options and select the right outcome
- Compare all features against thresholds, chain together outcomes to make the ‘tree’

Test for model with 16 inputs, 5 classes, 100 trees, depth 3 on VU9P FPGA:

- 4% LUTs, 1% FFs (0 DSPs, 0 BRAMSs)
- 25 ns latency with [I=1

Credit: Sioni Paris Summers -



hls 4 ml : ongoing work

Graph networks

- Natural solution for reconstructing the trajectories of charged particles

m—> -—-f-—'-—'-—>

computes weights for every edge
of the graph using the features of
the start and end nodes

Preliminary implementation:

\

aggregates forward and backward
node features with the edge
weights and updates node features

= =]

- Implemented as an HLS project, not supported in conversion tools
- Successfully tested a small example with 4 tracks, 4 layers
- Major effort required to scale up to larger graphs

Credit: Javier Duarte and Kazi Asif Ahmed Fuad

With each iteration, the model propagates
information through the graph,
strengthens important connections, and
weakens useless ones.
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hls 4 ml : ongoing work

Recurrent neural networks
Fully unrolled

Two implementations:

- Fully unrolled: Static

- Latency optimized with [1=1
- Large resource usage
- Static: same resources used for weights and multiplications
- N (N=latency of layer) copies can go through at the same time
- Latency is larger and Il limited to clock time for each layer

Supports small networks — scale it up using “large” matrix multiplication algorithm

Credit: Phil Harris, Nhan Tran, Richa Rao



hls 4 ml : future directions

Synthetic Gradient
Predicted gradient of the loss with
respect to the input activations

Training on FPGAs

- Build on top of multi-FPGA idea ;
Acﬁvéﬂons
Use synthetic gradients (SG) to remove the update lock
- Individual layers to learn in isolation 5 5 5
Input (_2 ........ g > (_2 2 Loss
Train SGs by another NN ~ &\<> N 3
- Each SG generator is only trained using the SGs
generated from the next layer — _
Q Q
| —— »| 3 | Loss
w

—
- Only the last layer trains on the data <
Input Q 00— (_2 B,
26

tps://deepmind.com/blog/article/decoupled-neural-networks-using-synthetic-gradients

Images source: ht


https://deepmind.com/blog/article/decoupled-neural-networks-using-synthetic-gradients

