hils 4 ml

his4ml: deploying deep learning on FPGAs for L1
trigger and Data Acquisition

Javier Duarte, Sergo Jindariani, Ben Kreis, Ryan Rivera, Nhan Tran (Fermilab)

Jennifer Ngadiuba, Maurizio Pierini, Sioni Summers, Vladimir Loncar (CERN)

.'5' Edward Kreinar (Hawkeye 360)
a%) Phil Harris, Song Han, Dylan Rankin (MIT)
. Zhenbin Wu (University of lllinois at Chicago)
mPP Giuseppe di Guglielmo (Columbia University)

Challenges in LHC

At the LHC proton beams collide at a frequency of 40 MHz
Extreme data rates of O(100 TB/s)

“Triggering” - Filter events to reduce data rates to manageable levels

The LHC big data problem

< K\
(4 2
N <
«*"& S
N D
v
1ns 1 pus 100 ms

Deploy ML algorithms very early

Challenge: strict latency constraints!

Field-Programmable Gate Array

Reprogrammable integrated circuits

Configurable logic blocks and embedded components

Flip-Flops (registers)
LUTs (logic)

DSPs (arithmetic)
Block RAMs (memory)

Massively parallel
Low power
Traditionally programmed with VHDL and Verilog

High-Level Synthesis (HLS) tools
Use C, C++, System C

T —)

“programmable hardware”

G DL_IDDLJ

\ Logic cell

Look-up "
table Flip-flop

high level synthesis for machine learning

User-friendly tool to automatically build and optimize DL models for FPGAs:

- Reads as input models trained with standard DL libraries
- Uses Xilinx HLS software
- Comes with implementation of common ingredients (layers, activation functions, binary NN ...)

his 4 ml

/

Keras
O PyTorch
€ ONNX

N\

compressed

HLS
conversion

model

VIVADO>

/
(=N
[

tune
configuration

Co-processing kernel

Custom firmware
design

hls 4 ml : features

The main idea: Store the full architecture and weights on chip

- Much faster access times
- For longer latency applications, weights storage in on-chip block memory is possible
- No loading weights from external source (e.g. DDR, PCle)

Limitations:

- Constraints on model size
- Not reconfigurable without reprogramming device

Solution: User controllable trade-off between resource usage and latency/throughput

- Tuned via “reuse factor”

hls 4 ml : exploiting FPGA hardware

Parallelization: Use reuse factor to tune the inference latency versus

utilization of FPGA resources

Can now be specified per-layer m

Quantization: Reduce precision of the calculations

Compression: Drop unnecessary weights (zero or close to zero) to reduce

the number of DSPs used

70% compression ~ 70% fewer DSPs

Reuse factor = 1, Kintex Ultrascale

3.01

1eq hisdami

—a— Full model
~=— Pruned model

Number of)
DSPs available compression
.....
<8,6> <16,6> <24.6> <32,6> <40,6>

Fixed-point precision

50

404

104

his4aml

Parallelization

Longer latency

—=— Reuse Factor = 1
—=— Reuse Factor = 2
—=— Reuse Factor = 3
—=— Reuse Factor = 4
—=— Reuse Factor = 5
—=— Reuse Factor = 6

3-layer pruned, Kintex Ultrascale A

~175 ns

~75ns

v

<8,6> <16,6>

<24,6>

<32,6> <40,6>

Fixed-point precision

More resources

reuse =4
use 1 multiplier 4 times

PP mult] reyse = 2
use 2 multipliers 2 times each
> mult 2
=»| mult
> mult] reuse =1
use 4 multipliers 1 time each
—p] mult
—p| mult
Quantization
his4ml
11 T
|
1.04
091 1
E 1
Jos 1 Full performance
g | at 8 fractional bits
3
w7
3 |
< 1
0.6 1 —=— g tagger
S | e q tagger
0.5 I —a&— w tagger
% —=— 7 tagger
| —e— t tagger
0.4
<8,6> <13,6> <18,6> <23,6> <28,6> <33,6> <38,6> 7

Fixed-point precision

Replace floating/fixed-point with 1/2-bit arithmetics Real-valued

Networks

- Binary: 1-bit (arXiv:1602.02830)
- Ternary: 2-bits (arXiv:1605.04711)

Multiplications @ * w) as bit-flip operations: g;n;;})’rks

- Binary: res =w==07? -d : d;
- Ternal’yires=w==0?0:w==—1?—d:d;

Binary/ternary architecture:

- Binary/Ternary Dense Binary/Ternary dense
- Batch Normalization Binary/Ternary dense

- Binary/Ternary tanh activation m—» Batch Normalization

Binary/Ternary tanh 8

Batch Normalization

https://arxiv.org/abs/1602.02830
https://arxiv.org/abs/1605.04711

hls 4 ml : Jet tagging benchmark model

Input(16)

Multi-classification task:

- Discrimination between highly energetic (boosted) q, g, W, Z, t
initiated jets

Dense(64) + ReLU

- 16 inputs, 5 outputs Dense(32) + ReLU

Average accuracy ~ 0.75 L0 Nis4ml
—— gtagger, AUC = 93.8% Dense(32) + ReLU
-~ qtagger, AUC = 90.4%
—— w tagger, AUC = 94.6%
—— ztagger, AUC = 93.9%
—— ttagger, AUC = 95.8%
g 101 ‘ Dense(5) + Softmax
< output
2
w
o
5
o
=
® 1072
o
t—-bW—bqq Z—qq W-qq q/g background
3-prong jet 2-prong jet 2-prong jet no substructure
and/or mass ~ 0 10-3 L ! | . I |
Reconstructed as one massive jet with substructure 0.0 0.2 0.4 0.6 0.8 1.0

Signal Efficiency

hls 4 ml : Jet tagging benchmark model

Run hyper-parameter bayesian optimization:

Recover performance with larger models

Binary: 16x448x224x224x5 (7x more neurons)

Ternary: 16x128x64x64x64x5 (2x more neurons + one more layer)

Number of neurons/layers, batch size, learning rate

ind Efficiency

10°

1072

eamOPtimized binary

—— gtagger, AUC = 91.5%
—— qtagger, AUC = 88.4%
—— wtagger, AUC = 92.4%
—— ztagger, AUC = 90.2%
—— ttagger, AUC = 93.8%

Average acc: 0.72

[
0.0 0.2 04 0.6 08 1.0

Optimized ternary

hisaml

Model Accuracy | Latency DSP BRAM | FF LUT
Base model 0.75 0.06 us 60% 0% 1% 7%
Optimized Binary | 0.72 0.21 us 0% 0% 7% 15%
Optimized Ternary | 0.72 0.11 us 0% 0% 1% 6%

Background Efficiency

1072

0.0 0.2 04 0.6 08 1.0

10

hils 4 ml : MNIST benchmark

Dense networks trained with the MNIST dataset

- 784 inputs (28x28 grayscale image), 10 outputs (digits)

Base model:

- 3 hidden layers with 128 neurons and RelLU activation

Binary/Ternary model:
- 3 hidden layers with batch normalization and binary/ternary tanh

Xilinx VU9P FPGA at 200 MHz, reuse factor 128

Model Accuracy Latency DSP BRAM | FF LUT
Dense model 0.97 2.6 us 21% 45% 12% | 33%
Binary dense model 0.93 2.6 us 0% 33% 7% 39%
Ternary dense model 0.95 2.6 us 0% 33% 7% | 40%

000 00060Qop0OOOCYZ2 ()OO
[T L U Y A A U A A
2222232722222 2A22%
3333333353333 333
Hg td A9 49 ¢v4d49 4 \¢Hd
555855 SS 55958554579
b6bblobbbcesébtoel
T79771771%792012%F777
¥3 28 8P BPITT TS B
?91994999%99%499494999

-

NDanca

NDanca

Dense

|

A
[\
0123456789

11

hls 4 ml : current status

Supported architectures:
- DNN

- Support for very large layers m
- Zero-suppressed weights

- Binary and Ternary DNN K
- 1- or 2-bit precision with limited loss of performance
- Computation without using DSPs, only LUTs
- Convolutional NNs
- 1D and 2D with pooling
- Currently limited to very small layers, working on support for larger layers
Other:
- Batch normalization
- Merge layers (concatenation, addition, subtraction etc)
- Numerous activation functions

12

hls 4 ml : ongoing work

Convolutional layers

Support for “large” convolutional layers

Express convolution as matrix multiplication

im2col algorithm
Reuse “large” matrix multiplication algorithm from MLP

Quantized (binary and ternary) weights

Credit: Jennifer Ngadiuba, Sioni Paris Summers

Kernel 1

Kernel 2

i

i

AN

Kernel N

i

W-(K+1) xH-(K+1)

CxK

Kernel 1

Kernel 2

Kernel N

+—>
CxK

13

hls 4 ml : ongoing work

Convolutional layers

Depthwise separable convolution (axiv:1610.02357)

- First step: depthwise convolution
- Second step: pointwise convolution
- For 3x3 kernels this can yield 8-9 times less multiplications

LeanConvNet (arxiv:1904.06952)

- Depth-wise (block diagonal) operator operating on each
channel separately and 1x1 convolution
- 5-point convolution kernel

I:' Per-channel parameter
. 1x1 convolution

e | = = 7 1
A’:'lﬂy u:-a)ﬂ)], W
' T {5

| }
oFF o@D o
| v

" o
7)
= 2 7
IIIIIIII%IIIIIII

Image source: Atul Pandey

14

https://arxiv.org/abs/1610.02357
https://arxiv.org/abs/1904.06952
https://medium.com/@zurister/depth-wise-convolution-and-depth-wise-separable-convolution-37346565d4ec

hls 4 ml : ongoing work

Graph networks (GarNet)

- Distance-weighted GNN capable of learning irregular patterns of sparse data (arXiv:1902.07987)
- Suitable for irregular particle-detector geometries
- Early stage of HLS implementation

fi

n @ i\~?' i
v @ f fix=1>V(dy)
dlx

dak —_—
- ’ / i : VZ .
@ / d3x - 7 ik
ﬁ =

Mﬂ,zx(ff/i)

Credit: Abhijay Gupta, Yutaro liyama, Jan Kieseler and Maurizio Pierini

Four

15

https://arxiv.org/abs/1902.07987

hls 4 ml : future directions
Multi-FPGA inference < J[FFIT

- Main idea: place layers onto multiple FPGAs and pipeline the execution

Leverage Galapagos framework (nttps:/github.com/tarafdar/galapagos)

- “..a framework for creating network FPGA clusters in a heterogeneous cloud data center.”
- Given a description of how a group of FPGA kernels are to be connected, creates a ready-to-use
network device

- Possible to use MPI programming model

Credit: Naif Tarafdar, Phil Harris

16

https://github.com/tarafdar/galapagos

hls 4 ml : other future developments

Recurrent Neural Networks (RNNs)
Boosted decision trees
Autoencoders

HLS implementations beyond Xilinx/Vivado

- Quartus HLS Compiler for Intel/Altera FPGAs
- Mentor Catapult HLS

Inference engine for CPUs based on his4ml
- Targeting integration with CMSSW

Many more...

17

hls 4 ml in production in HEP

CMS designing DL-based triggers for Run lll, using hls4ml for deployment

- Reduce muon rate by factor 4 (link)
- Run inference in 160ns on currently used boards (Virtex 7)

NN firmware resource usage

« Converted an earlier version of NN using HLS4ML

= 80 input nodes, 3 hidden layers with 64/32/16 nodes, and 1 output node.

- Pruning is applied to remove 50% of the unimportant synapses

- Use <18,8>-precision for inputs & output. 8 integer bits, 18 total bits
 Xilinx Virtex-7 target FPGA (as in the MTF7 board)

- Clock of 250 MHz
* Currently re-optimizing the NN structure for less resource usage.

- Asmaller version with 30/25/20 nodes uses only 50% DSP resource.

Utilization Estimates Performance Estimates

- Summary - Timing (ns)
Name | BRAM_18K DSP48E| FF | LUT 5 Summary
DSP__ . - . = Clock | Target| Estimated| Uncertainty|
Expression = 2 0 ap_clkl 4.00 3.49 0.50
FIFO 2 B D E -
Instance 56/ 2822/315515/112745 - Latency (clock cycles)
Memory = = - - = Summary
Multiplexer - - _ 36 Latency | Interval
Register = = 4689 - minl may minl may Type
Total 56 2822 320204112787 | 20 40 1 1lfunctionl |
Utilization (%) 1 78 36 26

~160ns fixed latency

CPAD Workshop 2018

Dec 9, 2018

hw.ila2 k

Dashboard Options

NN in MTF7 hardware

« Reading inputs corresponding to 8 simulated muons and calculating their pr.

* HLS IP core target frequency 250 MHz (which agrees with design frequency)

Waveform -
Q+ =&/ p» BB Q@ Q X of KN e > o of L

ILAStatus: Idie

Name)) . Result Valid every clock

8 muon outputs

Fixed Latency 40 clocks @ 250 MHz

Expect latency of ~40 + N,,0ns ClOCks
99% percentile of tracks to fit in both endcaps is 5. Per processor 5/12 = 0.4

CPAD Workshop 2018

18

https://indico.fnal.gov/event/18104/session/23/contribution/71

Conclusions

his4ml - software package for translation of trained neural networks into synthesizable
FPGA firmware

- Tunable resource usage latency/throughput
- Fast inference times, O(1us) latency

More information:

- Website: https://hls-fpga-machine-learning.github.io/hls4ml/
- Paper: https://arxiv.org/abs/1804.06913
- Code: https://github.com/hls-fpga-machine-learning/hls4ml

his 4 ml

https://hls-fpga-machine-learning.github.io/hls4ml/
https://arxiv.org/abs/1804.06913
https://github.com/hls-fpga-machine-learning/hls4ml

Bonus

20

hls 4 ml : mini tutorial

Keras

Install: € ONNX

pip install hls4ml

(fornow: git clone .. && cd hls4ml && pip install .) OnnxModel : models/my model.onnx
. InputData: data/my input features.dat
Translate to HLS: OutputPredictions : data/my predictions.dat
OutputDir: my project dir
ProjectName : myproject
Run synthesys etc.: XilinxPart: xckull5-flvb2104-2-i
ClockPeriod: 5

hls4ml convert -c my model.yml

hls4ml build -p my project dir -a
IOType: 1o parallel

Get help: HLSConfig:
hls4ml <command> -h Model :
Precision: ap fixed<lé6, 6>
...or visit: https://fastmachinelearning.org/hls4ml/ ReuseFactor : 2 \
Strategy: Resource
or contact us at his4ml.help@gmail.com 7 —
Degree of Default precision
parallelism Support for large models (weights, biases..),

https://fastmachinelearning.org/hls4ml/
mailto:hls4ml.help@gmail.com

hls 4 ml : Advanced configuration example

Specif
layer [

KerasJson: models/my model.json
KerasH5: models/my model weights.hb5
OutputDir: my project dir
ProjectName : myproject

XilinxPart: xckullb-flvb2104-2-1i
ClockPeriod: 5

IOType: io parallel
HLSConfig:
Model :
Precision: ap fixed<l6, 6>
ReuseFactor: 8
Strategy: Resource \
LayerName :
Applies to the
whole model

fcl relu:
//)' Precision:

. weight: ap fixed<18, 6>
¢ to this bias: ap fixed<l6, 8>
y hame result: ap fixed<18, 8>
ReuseFactor: 4

Applies to all other
Dense layers

LayerType :
Dense:
Precision:
default: ap fixed<18,8>
weight: ap fixed<14, 6>
ReuseFactor: 2
Activation:
Precision: ap fixed<1Z2,8>

!

Applies to all
Activation layers

22

hls 4 ml : ongoing work

Boosted decision trees

- BDTs have been popular for a long time in HEP reconstruction and analysis
- Suitable for highly parallel implementation in FPGAs
- Implementation in his4ml optimised for low latency
- No ‘if/else’ statement in FPGAs — evaluate all options and select the right outcome
- Compare all features against thresholds, chain together outcomes to make the ‘tree’

Test for model with 16 inputs, 5 classes, 100 trees, depth 3 on VU9P FPGA:

- 4% LUTs, 1% FFs (0 DSPs, 0 BRAMSs)
- 25 ns latency with [I=1

Credit: Sioni Paris Summers -

hls 4 ml : ongoing work

Graph networks

- Natural solution for reconstructing the trajectories of charged particles

m—> -—-f-—'-—'-—>

computes weights for every edge
of the graph using the features of
the start and end nodes

Preliminary implementation:

\

aggregates forward and backward
node features with the edge
weights and updates node features

= =]

- Implemented as an HLS project, not supported in conversion tools
- Successfully tested a small example with 4 tracks, 4 layers
- Major effort required to scale up to larger graphs

Credit: Javier Duarte and Kazi Asif Ahmed Fuad

With each iteration, the model propagates
information through the graph,
strengthens important connections, and
weakens useless ones.

24

hls 4 ml : ongoing work

Recurrent neural networks
Fully unrolled

Two implementations:

- Fully unrolled: Static

- Latency optimized with [1=1
- Large resource usage
- Static: same resources used for weights and multiplications
- N (N=latency of layer) copies can go through at the same time
- Latency is larger and Il limited to clock time for each layer

Supports small networks — scale it up using “large” matrix multiplication algorithm

Credit: Phil Harris, Nhan Tran, Richa Rao

hls 4 ml : future directions

Synthetic Gradient
Predicted gradient of the loss with
respect to the input activations

Training on FPGAs

- Build on top of multi-FPGA idea ;
Acﬁvéﬂons
Use synthetic gradients (SG) to remove the update lock
- Individual layers to learn in isolation 5 5 5
Input (_2 g > (_2 2 Loss
Train SGs by another NN ~ &\<> N 3
- Each SG generator is only trained using the SGs
generated from the next layer — _
Q Q
| —— »| 3 | Loss
w

—
- Only the last layer trains on the data <
Input Q 00— (_2 B,
26

tps://deepmind.com/blog/article/decoupled-neural-networks-using-synthetic-gradients

Images source: ht

https://deepmind.com/blog/article/decoupled-neural-networks-using-synthetic-gradients

