Journal article Open Access

Early Detection of Students at Risk - Predicting Student Dropouts Using Administrative Student Data from German Universities and Machine Learning Methods

Berens, Johannes; Schneider, Kerstin; Gortz, Simon; Oster, Simon; Burghoff, Julian


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">student dropout</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">early detection</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">administrative data</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">higher education</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">AdaBoost</subfield>
  </datafield>
  <controlfield tag="005">20200120161921.0</controlfield>
  <controlfield tag="001">3594771</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Wuppertal, WIB, CESifo</subfield>
    <subfield code="a">Schneider, Kerstin</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Wuppertal</subfield>
    <subfield code="a">Gortz, Simon</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Wuppertal, WIB</subfield>
    <subfield code="a">Oster, Simon</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Duesseldorf</subfield>
    <subfield code="a">Burghoff, Julian</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">752592</subfield>
    <subfield code="z">md5:06d995726e77f93f42c4dca84869bc90</subfield>
    <subfield code="u">https://zenodo.org/record/3594771/files/744639681.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-12-23</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:3594771</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">1-41</subfield>
    <subfield code="n">3</subfield>
    <subfield code="p">Journal of Educational Data Mining</subfield>
    <subfield code="v">11</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">University of Wuppertal, WIB, IEDMS</subfield>
    <subfield code="a">Berens, Johannes</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Early Detection of Students at Risk - Predicting Student Dropouts Using Administrative Student Data from German Universities and Machine Learning Methods</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution Non Commercial No Derivatives 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;To successfully reduce student attrition, it is imperative to understand what the underlying determinants of attrition are and which students are at risk of dropping out. We develop an early detection system (EDS) using administrative student data from a state and private university to predict student dropout as a basis for a targeted intervention. To create an EDS that can be used in any German university, we use the AdaBoost Algorithm to combine regression analysis, neural networks, and decision trees - instead of relying on only one specific method. Prediction accuracy at the end of the first semester is 79% for the state university and 85% for the private university of applied sciences. After the fourth semester, the accuracy improves to 90% for the state university and 95% for the private university of applied sciences.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">url</subfield>
    <subfield code="i">isCitedBy</subfield>
    <subfield code="a">https://jedm.educationaldatamining.org/index.php/JEDM/article/view/389</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.3594770</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.3594771</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
385
275
views
downloads
All versions This version
Views 385385
Downloads 275275
Data volume 207.0 MB207.0 MB
Unique views 354354
Unique downloads 243243

Share

Cite as