Journal article Open Access

Early Detection of Students at Risk - Predicting Student Dropouts Using Administrative Student Data from German Universities and Machine Learning Methods

Berens, Johannes; Schneider, Kerstin; Gortz, Simon; Oster, Simon; Burghoff, Julian


DCAT Export

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#">
  <rdf:Description rdf:about="https://doi.org/10.5281/zenodo.3594771">
    <rdf:type rdf:resource="http://www.w3.org/ns/dcat#Dataset"/>
    <dct:type rdf:resource="http://purl.org/dc/dcmitype/Text"/>
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://doi.org/10.5281/zenodo.3594771</dct:identifier>
    <foaf:page rdf:resource="https://doi.org/10.5281/zenodo.3594771"/>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Berens, Johannes</foaf:name>
        <foaf:givenName>Johannes</foaf:givenName>
        <foaf:familyName>Berens</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>University of Wuppertal, WIB, IEDMS</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Schneider, Kerstin</foaf:name>
        <foaf:givenName>Kerstin</foaf:givenName>
        <foaf:familyName>Schneider</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>University of Wuppertal, WIB, CESifo</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Gortz, Simon</foaf:name>
        <foaf:givenName>Simon</foaf:givenName>
        <foaf:familyName>Gortz</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>University of Wuppertal</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Oster, Simon</foaf:name>
        <foaf:givenName>Simon</foaf:givenName>
        <foaf:familyName>Oster</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>University of Wuppertal, WIB</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Burghoff, Julian</foaf:name>
        <foaf:givenName>Julian</foaf:givenName>
        <foaf:familyName>Burghoff</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>University of Duesseldorf</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:title>Early Detection of Students at Risk - Predicting Student Dropouts Using Administrative Student Data from German Universities and Machine Learning Methods</dct:title>
    <dct:publisher>
      <foaf:Agent>
        <foaf:name>Zenodo</foaf:name>
      </foaf:Agent>
    </dct:publisher>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2019</dct:issued>
    <dcat:keyword>student dropout</dcat:keyword>
    <dcat:keyword>early detection</dcat:keyword>
    <dcat:keyword>administrative data</dcat:keyword>
    <dcat:keyword>higher education</dcat:keyword>
    <dcat:keyword>AdaBoost</dcat:keyword>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2019-12-23</dct:issued>
    <dct:language rdf:resource="http://publications.europa.eu/resource/authority/language/ENG"/>
    <owl:sameAs rdf:resource="https://zenodo.org/record/3594771"/>
    <adms:identifier>
      <adms:Identifier>
        <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/3594771</skos:notation>
        <adms:schemeAgency>url</adms:schemeAgency>
      </adms:Identifier>
    </adms:identifier>
    <dct:relation rdf:resource="https://jedm.educationaldatamining.org/index.php/JEDM/article/view/389"/>
    <dct:isVersionOf rdf:resource="https://doi.org/10.5281/zenodo.3594770"/>
    <owl:versionInfo>1.0.0</owl:versionInfo>
    <dct:description>&lt;p&gt;To successfully reduce student attrition, it is imperative to understand what the underlying determinants of attrition are and which students are at risk of dropping out. We develop an early detection system (EDS) using administrative student data from a state and private university to predict student dropout as a basis for a targeted intervention. To create an EDS that can be used in any German university, we use the AdaBoost Algorithm to combine regression analysis, neural networks, and decision trees - instead of relying on only one specific method. Prediction accuracy at the end of the first semester is 79% for the state university and 85% for the private university of applied sciences. After the fourth semester, the accuracy improves to 90% for the state university and 95% for the private university of applied sciences.&lt;/p&gt;</dct:description>
    <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/>
    <dct:accessRights>
      <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess">
        <rdfs:label>Open Access</rdfs:label>
      </dct:RightsStatement>
    </dct:accessRights>
    <dcat:distribution>
      <dcat:Distribution>
        <dct:license rdf:resource="https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode"/>
        <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.3594771"/>
      </dcat:Distribution>
    </dcat:distribution>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL>https://doi.org/10.5281/zenodo.3594771</dcat:accessURL>
        <dcat:byteSize>752592</dcat:byteSize>
        <dcat:downloadURL>https://zenodo.org/record/3594771/files/744639681.pdf</dcat:downloadURL>
        <dcat:mediaType>application/pdf</dcat:mediaType>
      </dcat:Distribution>
    </dcat:distribution>
  </rdf:Description>
</rdf:RDF>
378
268
views
downloads
All versions This version
Views 378378
Downloads 268268
Data volume 201.7 MB201.7 MB
Unique views 348348
Unique downloads 238238

Share

Cite as