
28.3.2019 Object Constraint Language (OCL) tutorial

https://modeling-languages.com/ocl-tutorial/ 1/13

Object Constraint Language (OCL)
tutorial
by Jordi Cabot | Mar 21, 2012 | book, teaching, UML and OCL | 4 comments

As part of my participation in the 12th Int. School on Formal Methods: Model-Driven
Engineering (SFM´12) I´ve co-authored an OCL tutorial book chapter (together with
Martin Gogolla) introducing the Object Constraint Language (you may want to read why
you need to learn OCL �rst).

The abstract of the chapter is the following:

The Object Constraint Language (OCL) started as a complement of the UML notation with
the goal to overcome the limitations of UML (and in general, any graphical notation) in
terms of precisely specifying detailed aspects of a system design. Since then, OCL has
become a key component of any model-driven engineering (MDE) technique as the
default language for expressing all kinds of (meta)model query, manipulation and
speci�cation requirements. Among many other applications, OCL is frequently used to
express model transformations (as part of the source and target patterns of
transformation rules), well-formedness rules (as part of the de�nition of new domain-
speci�c languages), or code-generation templates (as a way to express the generation
patterns and rules). This chapter pretends to provide a comprehensive view of this
language, its many applications and available tool support as well as the latest research
developments and open challenges around it.

And these are the slides I used during the tutorial

 aa

https://modeling-languages.com/author/modelinglang/
https://modeling-languages.com/category/resource/book/
https://modeling-languages.com/category/resource/teaching/
https://modeling-languages.com/category/topic/uml/
http://www.sti.uniurb.it/events/sfm12mde/
https://modeling-languages.com/wp-content/uploads/2012/03/OCLChapter.pdf
http://www.db.informatik.uni-bremen.de/~gogolla/
https://modeling-languages.com/why-you-need-to-learn-ocl/
https://modeling-languages.com/

28.3.2019 Object Constraint Language (OCL) tutorial

https://modeling-languages.com/ocl-tutorial/ 2/13

OCL tutorial from Jordi Cabot

The full text can be found here (© Springer-Verlag). I’m copying below the �rst three
sections which I believe are the most useful for a real beginner (all the rest go to the
previous link for the complete discussion):

1. Introduction to the Object Constraint Language tutorial
The Object Constraint Language (OCL) appeared as an e�ort to overcome the
limitations of UML when it comes to precisely specifying detailed aspects of a system
design. OCL was �rst developed in 1995 inside IBM as an evolution of an expression
language in the Syntropy method [26]. The work on OCL was part of a joint proposal
 with ObjectTime Limited presented as a response to the RFP for a standard object-
oriented analysis and design language issued by the Object Management Group (OMG)
 [26]. That standard came to be what we now know as UML and OCL became integrated
in it in 1997.

Initially, OCL was only used as a constraint language for UML but quickly ex-panded its
scope and now OCL has become a key component of any model-driven engineering
(MDE) technique as the default language for expressing all kinds of (meta)model query,
manipulation and speci�cation requirements. Among many other applications, OCL is
frequently used to express model transformations (as part of the source and target
patterns of transformation rules), well-formedness rules (as part of the de�nition of new
domain-speci�c languages, or code generation templates (as a way to express the
generation patterns and rules). To adapt the language to these new applications,

1 of 118

 View on SlideShare
Like this slideshow? Why not share!

Share

https://www.slideshare.net/jcabot/ocl-tutorial
https://www.slideshare.net/jcabot
https://modeling-languages.com/wp-content/uploads/2012/03/OCLChapter.pdf
https://www.springer.com/computer/lncs?SGWID=0-164-0-0-0

28.3.2019 Object Constraint Language (OCL) tutorial

https://modeling-languages.com/ocl-tutorial/ 3/13

several new (sub)versions of the language have been released. At the moment of writing
this chapter, the current version of the OCL language is version 2.3.1 [20].

This chapter pretends to provide a comprehensive view of this language, its many
applications and available tool support as well as the latest research devel- opments and
open challenges around it. The rest of this chapter is structured as follows. Section 2
motivates the need for OCL. Section 3 gives a brief overview of the language, while
Section 4 provides a more precise language description. Then, Section 5 classi�es
existings OCL tools. Finally, Section 6 outlines a possible research agenda for OCL and
Section 7 provides some �nal conclusions.

2. Motivation: Why OCL is needed
Graphical modeling languages are the preferred choice for many designers when it
 comes to de�ne the structural aspects of a domain (i.e., its main concepts, their
properties and the relationships between them). The most typical example of a graphical
 notation is UML [21], specially its class diagram which is by far the most used UML
diagram [13].

Nevertheless, this facility of use comes with a price. In order to keep the number of
notational elements manageable, language designers must limit the expressiveness of
the language. This means that graphical notations can only express a limited subset
of all the relevant information of a domain. This is where OCL (and in general, any
other textual language) comes into play. They are a necessary complement of the UML
(or other graphical languages) notation in order to be able to precisely specify all
detailed aspects of a system design.

As an example, take a look at the class diagram of Figure 1 that will be used as
running example throughout the chapter. This diagram is an excerpt of the EU-Rent
 Car Rentals Speci�cation [14], an in-depth speci�cation of the EU-Rent case study,
 which is a widely known case study being promoted as a basis for demonstration of
product capabilities. EU-Rent presents a car rental company with branches in several
countries that provides typical rental services. EU-Rent was originally developed by
Model Systems, Ltd.

This excerpt contains information about the rentals of the company (Rental class), the
company branches (Branch class), the rented cars (Car), the category to which they
belong (CarGroup) and the customers (Customer) that at some point in time may
become blacklisted (BlackListed) due to delayed car returns, unpaid rentals, etc. Each
 rented car has one or more registered drivers and a pickup and drop o� branch
 assigned.

28.3.2019 Object Constraint Language (OCL) tutorial

https://modeling-languages.com/ocl-tutorial/ 4/13

Fig. 1. Running Example – Partial Class Diagram of the EU-Rent company

This may look like a quite complete de�nition of the problem but in reality it is just the tip
of the iceberg. Many important details cannot be de�ned just using the notation
 available for UML class diagrams. Just to mention some aspects that the UML diagram
 does not answer:

1. Can black listed people rent new cars? (common sense may suggest answering no to

this question but in fact this is not speci�ed anywhere in the diagram so di�erent people

may assume di�erent answers)

2. How is the price of a rental calculated?

3. What are the conditions to be able to extend an existing rental?

4. Should the driving license of all drivers be valid throughout the full rental period? Is

there a minimum driving seniority required? Can the same driver have two active

rentals?

5. Can the pickup and drop o� branches di�er?

6. Can I choose a car already assigned to another rental?

The next section will show how OCL can be used to express all these addi- tional
concerns.

3. OCL in a Nutshell
The goal of this section is to give you an informal short description of the OCL and show
its usefulness by exemplifying how it can be used to solve the open questions left at the
end of the last section.

OCL is a general-purpose (textual) formal language adopted as a standard by the OMG
(see the current version of the OCL speci�cation [20]) used to de�ne several kinds of
expressions that complement the information of (UML) models.

OCL is a typed, declarative and side-e�ect free speci�cation language. Typed means that
each OCL expression evaluates to a type (either one of the prede�ned OCL types or a

28.3.2019 Object Constraint Language (OCL) tutorial

https://modeling-languages.com/ocl-tutorial/ 5/13

type in the model where the OCL expression is used) and must conform to the rules
and operations of that type. Side-e�ect free implies that OCL expressions can query or
constrain the state of the system but not modify

Declarative means that OCL does not include imperative constructs like as- signments.
And �nally, speci�cation refers to the fact that the language de�nition does not include
any implementation details nor implementation guidelines.

Among the many applications of OCL, it can be used to de�ne the following kinds of
expressions (for the sake of simplicity we focus on OCL usages in class diagrams) :

Invariants to state all necessary condition that must be satis�ed in each possible

instantiation of the model.

Initialization of class properties.

Derivation rules that express how the value of derived model elements must be

computed.

Query operations

Operation contracts (i.e., set of operation pre- and postconditions)

In the following we brie�y introduce each expression type and explain some basic OCL
construct along the way. The next section will present the full details of the language.

Invariants
Integrity constraints in OCL are represented as invariants de�ned in the context of a
speci�c type, named the context type of the constraint. Its body, the boolean condition to
be checked, must be satis�ed by all instances of the context type.

Invariants are without a doubt the most common OCL expression since they allow
designers to easily specify all kinds of conditions that the system must comply with.

Invariants can restrict the value of single objects, like the following QuoteOverZero :

stating that all quotes must have a positive value. Note that the self variable represents
an arbitrary instance of the Quote class and the dot notation is used to access the
properties of the self object (as the value attribute in the example). As stated above, all
instances of Quote (the context type of the constraint in this case) must evaluate this
condition to true.

Nevertheless, many invariants express more complex conditions limiting the possible
relationships between di�erent objects in the system, usually related through
association links. For instance, this NoRentalsBlackListed constraint forbids BlackListed
people of renting cars:

context Quote inv QuoteOverZero: self.value > 0

context BlackListed inv NoRentalsBlackListed: self.rental->forAll(r |

28.3.2019 Object Constraint Language (OCL) tutorial

https://modeling-languages.com/ocl-tutorial/ 6/13

where we �rst retrieve all rentals linked to a blacklisted person and then we make sure
that all of them were created before the person was blacklisted. This is done by iterating
on all related rentals and evaluating the date condition on each of them; the forAll
iterator returns true i� all elements of the input collection evaluate the condition to true.

Initialization Expressions
OCL can be used to specify the initial value that the properties of an object must take
upon the object creation. Obviously, the type of the expression must conform to the
type of the initialized property (this must also take into account cases where the property
to be initialized is a collection).

For instance, the following OCL expression initializes to false the value of the
premium attribute of Customers (we are assuming that customers can only promote to
the premium status after renting several cars).

Derived Elements
Derived elements are elements whose value/population can be inferred from the
value/population of other model elements as de�ned in the element’s derivation rule.
OCL is a popular choice for specifying these derivation rules.

OCL derivation rules follow the same structure as init expressions (see above) although
their interpretation is di�erent. An init expression must be true when the object is
created but the restriced property may change its value afterwards (i.e., customers start
as non-premium but may evolve to premium during their time in the system). Instead,
derivation rules constrain the value of a derived element throughout all its life-span.
Note that this does not imply that the value of a derived element cannot change, it only
means that it will always change according to the evaluation of its derivation rule.

As an example, consider the following rule for the derived element discount in class
Customer, stating that premium members get a 30% discount while non- premium
 members get 15% if they have at least rented high category cars �ve times while the
rest of the customers get no discount at all.

The select iterator in the expression returns the subcollection of elements from the
input collection that satisfy the condition. Then, the size collection operator returns the
cardinality of the output subcollection and this value is compared with the ‘5’ threshold.
Note that in this example, the input collection (self.rental.car.carGroup) is not a set but a
bag (i.e., a collection with repeated elements) since a user may have rented the same car
twice in di�erent rentals or two cars belonging to the same car group.

context Customer::premium: boolean init: false

context Customer::discount: integer derive:
 if not self.premium then
 if self.rental.car.carGroup->select(c|c.category=’high’)->size
 then 15 else 0 endif
 else 30 endif

28.3.2019 Object Constraint Language (OCL) tutorial

https://modeling-languages.com/ocl-tutorial/ 7/13

Query Operations
As the name indicates, query operations are a wrapped OCL expression that queries
the system data and returns the information to the user.

As an example, the following query operation returns true if the car on which the
operation is executed is the most popular in the rental system.

Operation Contracts
There are two di�erent approaches for specifying an operation e�ect: the im- perative
 and the declarative approach [27]. In an imperative speci�cation, the designer
explicitly de�nes the set of structural events (inserts/updates/deletes) to be applied
when executing the operation. Instead, in a declarative speci�ca- tion, a contract for
each operation must be provided. The contract consists of a set of pre- and
 postconditions. A precondition de�nes a set of conditions on the operation input and
 the system state that must hold when the operation is issued while postconditions
state the set of conditions that must be satis�ed by the system state at the end of the
operation. OCL is usually the language of choice to express pre- and postconditions for
operation contracts at the modeling level.

As an example, the following newRental operation describes (part of) the business
logic behind the creation of a new rental in the EU-rent system:

The precondition checks that the customer has a valid license for the duration of the
rental5 while the postcondition states that by the end of the operation a new object r of
type Rental must have been created and initialized with the set of values passed as
parameters (note that postconditions are underspeci�cations, i.e., they only specify part
of the system state at the end of the execution which leads to the frame problem [4]
and other similar issues; this problem is not OCL-speci�c and thus it is outside of the
scope of this chapter).

OCL Language Description
Figure 2 gives an overview of the OCL type system in form of a feature model. Using a
tree-like description, feature models allow to describe mandatory and optional features
of a subject, and they allow to specify alternative features as well conjunctive features.
In particular, the �gure pictures the di�erent kinds of available types. Before explaining

context Car::mostPopular(): boolean
body: Car::allInstances()->forAll(c1|c1<>self
 implies c1.rentalAgreement->size()<=self.rentalAgreement->size())

context Rental::newRental(id:Integer, price:Real, startingDate:Date,
 endingDate:Date, customer:Customer, carRegNum:String, pickupBranch
pre: customer.licenseExpDate>endingDate
post: Rental.allInstances->one(r | r.oclIsNew() and
 r.oclIsTypeOf(Rental) and r.endingDate=endingDate and r.startingDat
 and r.driver=customer and r.pickupBranch=pickupBranch and r.dropOff
 and r.car=Car.allInstances()->any(c | c.regNum=carRegNum))

28.3.2019 Object Constraint Language (OCL) tutorial

https://modeling-languages.com/ocl-tutorial/ 8/13

the type system in a systematic way, let us discuss OCL example types which are already
known or which can be deduced from the class diagram of our running example in Fig. 3.

Fig. 2. OCL Types as a Feature Model

Attributes types, as for example in Car::regNum:String, are prede�ned basic, atomic
types. Classes which are de�ned by the class diagram are atomic, user-de�ned class
types. If we already have an expression cg of type CarGroup, then the OCL expression
 cg.car has the type Set(Car) due to the multiplicity 1..*. The type Set(Car) is a �at,
concrete collection type. Set(Car) is a rei�cation of the parametrized collection type Set(T)
where T denotes an arbitrary type parameter which can be stubstituted. The type
Sequence(Set(Car)) is a nested collection type being a rei�cation of the parametrized,
nested collection type Sequence(Set(T)). If cg:CarGroup is given, then the expression
 Tuple{cat:cg.category, cars:cg.car} has type Tuple(cat:String, cars:Set(Car)) which is a
tuple type.

28.3.2019 Object Constraint Language (OCL) tutorial

https://modeling-languages.com/ocl-tutorial/ 9/13

Fig. 3. Example Class Diagram in USE tool

Again, you can read the complete text of the tutorial for free by downloading this pdf

4 Comments
Chris on June 23, 2017 at 6:30 am

Really great article, thank you

Reply

Tony on August 24, 2017 at 4:13 pm

Excellent article with clear explanations. Great for novices and experts.

Reply

hanan on April 25, 2018 at 4:25 pm

Hello Sir,
Thank you very much for this article.
Actually I have questions about OCL. If I want to implement set of rules by
OCL then detect the validity of these rules (check for con�icts) with my
proposed algorithm (written in java, python.. etc) Is that possible with
OCL??

https://modeling-languages.com/wp-content/uploads/2012/03/OCLChapter.pdf
https://www.linkedin.com/in/tony-pun-59b31429/

28.3.2019 Object Constraint Language (OCL) tutorial

https://modeling-languages.com/ocl-tutorial/ 10/13

Syncfusion

API modeling with RepreZen

Modeling: all you need to know

I am still new for OCL!!

Reply

Jordi Cabot on April 27, 2018 at 8:16 am

Yes, you can check the consistency of the rules with any of the
tools mentioned here: https://modeling-languages.com/state-art-
static-model-veri�cation-tools/

Reply

     

Search

mailto:jordi.cabot@icrea.cat
https://www.facebook.com/modelinglanguages/
https://twitter.com/softmodeling
https://www.instagram.com/softmodeling/
https://modeling-languages.com/feed/
https://www.linkedin.com/in/jcabot/
https://srv.buysellads.com/ads/click/x/GTND42QMCKSI5KQUCYY4YKQMCW7IEK7LF6AITZ3JCWBIC53NCWSITKJKC6BIPK7UFTYIKK3EHJNCLSIZ
https://srv.buysellads.com/ads/click/x/GTND42QMCKSI527YCV74YKQMCW7IEKJMF6SIVZ3JCWBIC53NC6BIT5QKC6BIPK7UFTYIKK3EHJNCLSIZ
https://modeling-languages.com/
https://modeling-languages.com/state-art-static-model-verification-tools/

28.3.2019 Object Constraint Language (OCL) tutorial

https://modeling-languages.com/ocl-tutorial/ 11/13

JavaScript diagrams

Build Diagramming Applications

https://www.amazon.com/gp/product/1627057080/ref=as_li_tl?ie=UTF8&camp=1789&creative=9325&creativeASIN=1627057080&linkCode=as2&tag=modellangupor-20&linkId=00f883b348b60534331483af4cf75943
https://srv.buysellads.com/ads/click/x/GTND42QMCKSI55QMCW74YKQMCW7I52Q7CEYI4Z3JCWBIC53LCT7IEK7KC6BIPK7UFTYIKK3EHJNCLSIZ

28.3.2019 Object Constraint Language (OCL) tutorial

https://modeling-languages.com/ocl-tutorial/ 12/13

Shop Related Products

Ads by Amazon

Model-Driven Software Engineeri…

$67.89

 (8)

The Object Constraint Language: Getting…

$44.99

 (3)

https://srv.buysellads.com/ads/click/x/GTND42QMCKSI52JJCEALYKQMCW7I5K7UC6SI6Z3JCWBIC53ECYSDV27KC6BIPK7UFTYIKK3EHJNCLSIZ
https://aax-us-east.amazon-adsystem.com/x/c/QmRY-V8MWUdbTP4h--_9AREAAAFpxMvOXgEAAAE0Aac3f0c/https://www.amazon.com/adprefs/ref=sm_n_au_dka_DE_ac?tag=modellangupor-20&linkCode=w41
https://aax-us-east.amazon-adsystem.com/x/c/QmRY-V8MWUdbTP4h--_9AREAAAFpxMvOXgEAAAE0Aac3f0c/https://affiliate-program.amazon.com/home/ads/ref=sm_n_au_dka_DE_logo?adId=logo&creativeASIN=logo&linkId=ae4588a85dc25995d3147533bb1bff49&tag=modellangupor-20&linkCode=w41&ref-refURL=https%3A%2F%2Fmodeling-languages.com%2Focl-tutorial%2F&slotNum=1&imprToken=L-zIDBPCTQRIjguqVJlXEw&adType=smart&adMode=auto&adFormat=grid&impressionTimestamp=1553784886102&ac-ms-src=nsa-ads&cid=nsa-ads
https://aax-us-east.amazon-adsystem.com/x/c/QmRY-V8MWUdbTP4h--_9AREAAAFpxMvOXgEAAAE0Aac3f0c/https://www.amazon.com/Model-Driven-Software-Engineering-Practice-Synthesis/dp/1627057080/ref=sm_n_au_dka_DE_pr_con_0_0?adId=1627057080&creativeASIN=1627057080&linkId=ae4588a85dc25995d3147533bb1bff49&tag=modellangupor-20&linkCode=w41&ref-refURL=https%3A%2F%2Fmodeling-languages.com%2Focl-tutorial%2F&slotNum=1&imprToken=L-zIDBPCTQRIjguqVJlXEw&adType=smart&adMode=auto&adFormat=grid&impressionTimestamp=1553784888973
https://aax-us-east.amazon-adsystem.com/x/c/QmRY-V8MWUdbTP4h--_9AREAAAFpxMvOXgEAAAE0Aac3f0c/https://www.amazon.com/Object-Constraint-Language-Getting-Models/dp/0321179366/ref=sm_n_au_dka_DE_pr_con_0_1?adId=0321179366&creativeASIN=0321179366&linkId=ae4588a85dc25995d3147533bb1bff49&tag=modellangupor-20&linkCode=w41&ref-refURL=https%3A%2F%2Fmodeling-languages.com%2Focl-tutorial%2F&slotNum=1&imprToken=L-zIDBPCTQRIjguqVJlXEw&adType=smart&adMode=auto&adFormat=grid&impressionTimestamp=1553784888975

28.3.2019 Object Constraint Language (OCL) tutorial

https://modeling-languages.com/ocl-tutorial/ 13/13

Modeling Languages Copyright © 2018.

Tags

action language adoption Alf api atl Eclipse embedded EMF ER

executable UML fUML GitHub graphical ICSE ifml Java JavaScript json MDA

modelia modelsconf modisco NoSQL OpenAPI open data open source papyrus

php python repository rest shlaer-mellor sql STAF SYSML

systems engineering testing textual tutorial UML Pro�le veri�cation wordpress

XMI Xtext xtuml

   

https://modeling-languages.com/
https://modeling-languages.com/tag/action-language/
https://modeling-languages.com/tag/adoption/
https://modeling-languages.com/tag/alf/
https://modeling-languages.com/tag/api/
https://modeling-languages.com/tag/atl/
https://modeling-languages.com/tag/eclipse/
https://modeling-languages.com/tag/embedded/
https://modeling-languages.com/tag/emf/
https://modeling-languages.com/tag/er/
https://modeling-languages.com/tag/executable-uml/
https://modeling-languages.com/tag/fuml/
https://modeling-languages.com/tag/github/
https://modeling-languages.com/tag/graphical/
https://modeling-languages.com/tag/icse/
https://modeling-languages.com/tag/ifml/
https://modeling-languages.com/tag/java/
https://modeling-languages.com/tag/javascript/
https://modeling-languages.com/tag/json/
https://modeling-languages.com/tag/mda/
https://modeling-languages.com/tag/modelia/
https://modeling-languages.com/tag/modelsconf/
https://modeling-languages.com/tag/modisco/
https://modeling-languages.com/tag/nosql/
https://modeling-languages.com/tag/openapi/
https://modeling-languages.com/tag/open-data/
https://modeling-languages.com/tag/open-source/
https://modeling-languages.com/tag/papyrus/
https://modeling-languages.com/tag/php/
https://modeling-languages.com/tag/python/
https://modeling-languages.com/tag/repository/
https://modeling-languages.com/tag/rest/
https://modeling-languages.com/tag/shlaer-mellor/
https://modeling-languages.com/tag/sql/
https://modeling-languages.com/tag/staf/
https://modeling-languages.com/tag/sysml/
https://modeling-languages.com/tag/systems-engineering/
https://modeling-languages.com/tag/testing/
https://modeling-languages.com/tag/textual/
https://modeling-languages.com/tag/tutorial/
https://modeling-languages.com/tag/uml-profile/
https://modeling-languages.com/tag/verification/
https://modeling-languages.com/tag/wordpress/
https://modeling-languages.com/tag/xmi/
https://modeling-languages.com/tag/xtext/
https://modeling-languages.com/tag/xtuml/
https://www.facebook.com/modelinglanguages/
https://twitter.com/softmodeling
https://modeling-languages.com/feed/

