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a b s t r a c t 

Swift performance assessment of dehumidification systems, in design stage and while operation of the 

system is of substantial importance for commercialization and wide implementation of this technology. 

This paper presents a novel statistical model, employing Gaussian Process Regression (GPR) to investigate 

performance of a solar/waste energy driven dehumidification/regeneration cycle with a solid adsorbent 

bed. The statistical model takes thousands of operating conditions derived from a numerical model to 

predict the performance of the system. This predictive tool directly correlates the main operating param- 

eters with the performance parameters of the system. The operating parameters considered in this study 

are: temperature, relative humidity and flow rate of process air, temperature of regeneration air, length 

of the desiccant bed, solar radiation intensity and operating time, and the selected performance parame- 

ters are: moisture extraction efficiency for the dehumidification cycle and moisture removal efficiency for 

the regeneration cycle. The model is evaluated by three metrics, namely: root mean square error (RSME), 

mean absolute percentage error (MAPE), and coefficient of determination (R 2 ). The maximum RSME and 

MAPE for moisture extraction are only 0.045, 0.21%, and for moisture removal efficiencies are 0.082 and 

0.39%, respectively, while the R 2 value is derived as 0.97. The developed model is used to investigate the 

impact of four selected operating parameters on system performance. Additionally, the system perfor- 

mance is predicted for randomly generated operating conditions as well as warm and humid climates. 

The developed GPR model provides a swift and highly accurate predictive tool for design of the dehu- 

midification systems and for commercialization of the investigated dehumidification systems. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Air with a relative humidity (RH) between 40% and 60% is the

ost convenient indoor air [1] . Due to high energy consumption

nd low COP [2–4] of conventional mechanical vapor compression

efrigeration air conditioning systems [2] , energy efficient desiccant

ooling and air-conditioning systems have attracted more atten-

ion in past decades [3] . Numerous research has suggested that the

esiccant cooling and air-conditioning systems with solid or liquid

esiccants are the potential substitutes to electrically driven vapor

ompression cooling systems [4-6] . 

Desiccant systems have been investigated by a number of ex-

erimental and numerical studies. Through experimental studies,

hen et al. [7] presented a novel polymer hollow fiber liquid des-
Abbreviations: OA, osteoarthritis; GPR, Gaussian process regression; RMSE, Root 

ean square error; MAPE, Mean absolute percentage error. 
∗ Corresponding author. 
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ccant dehumidification system with latent effectiveness of 0.25–

.43 and the sensible effectiveness of 0.31–0.52. Cho et al. [8] con-

ucted a series of experiments and found that the cross-flow liquid

esiccant dehumidifier has stable dehumidification performance

egardless of the variations in operating parameters, but the cross-

ow dehumidifier performance is effected by temperature and hu-

id process air conditions. Bai et al. [9] experimentally investi-

ated the performance of the membrane-based liquid desiccant

ehumidification system with calcium chloride. The sensible, la-

ent and total effectiveness in their study were recorded as 0.49,

.55, and 0.53, respectively. Yang et al. [10] studied a novel solar

olid dehumidification and regeneration bed with three regenera-

ion methods. The results showed that the combined regeneration

ethods i.e., simulated solar radiation regeneration, microwave re-

eneration, and combined regeneration of the microwave and sim-

lated solar radiation had higher regeneration efficiencies. 

Among the numerical studies, Su et al. [11] presented a two-

tage liquid-desiccant dehumidification system with 30.63% lower

ower consumption compared to the conventional systems. Park

https://doi.org/10.1016/j.enbuild.2019.109406
http://www.ScienceDirect.com
http://www.elsevier.com/locate/enbuild
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enbuild.2019.109406&domain=pdf
mailto:xudong.zhao@hull.ac.uk
mailto:x.ma@hull.ac.uk
https://doi.org/10.1016/j.enbuild.2019.109406
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Nomenclature 

d Humidity ratio (kg water vapor/kg of dry air) 

W Water content, (kg adsorbate/kg adsorbent) 

c p Specific heat capacity, kJ/kg K 

A Cross-sectional area, m 

2 

C Perimeter of air flow passage, m 

T Temperature, °C 

RH Relative humidity 

u Air velocity, (m/s) 

D s surface diffusivity, m 

2 /s 

D 0 Ordinary diffusivity, m 

2 /s 

D G Gas phase diffusivity, m 

2 /s 

L Bed length, m 

X Dependent variable 

K Thermal conductivity, W/m K 

Sh Sherwood number 

K y Coefficient of mass convection, kg/m 

2 s 

y Independent variable 

N Number of operating conditions 

F Volume ratio 

I Solar radiation intensity, W/m 

2 

T Time, s 

t h Hourly operating time, hr 

Nu Nusselt number 

z Air flow direction 

Subscripts 

A Air 

p Process air 

out Outlet 

i Initial 

in Inlet 

d Desiccant 

me Moisture extraction 

mr Moisture removal 

r Regeneration 

v Vapor 

t Training 

d Desiccant 

Greek symbols 

α Heat transfer coefficient, kW/m 

2 K 

ρ Density, kg/m 

3 

η Efficiency 

ε Measurement error 

ɛ Porosity 

Ɵ Length-scale 

β Model coefficient 

φ Volume ratio of desiccant,% 

σ 2 
f 

Signal variance 

et al. [12] compared a liquid desiccant and evaporative cooling-

assisted system to a single stage one and found that the primary

energy consumption is 17.4% lower while thermal and primary co-

efficients are 41% and 20% higher in the liquid desiccant and evap-

orative cooling-assisted system. Guo et al. [13] performed a hy-

brid method combining the electrodialysis and thermal regenera-

tion method for liquid desiccant dehumidification and found elec-

trodialysis accounted for 85% of the total energy consumption of

liquid desiccant regeneration. Song et al. [14] detected the hid-

den relationship between the heating and cooling sources and

the air states. Ali et al. [15] simulated different components of

a liquid desiccant based dehumidification system for greenhouse

cultivation. The model is found out to be effective in removing
he moisture created by the crops inside the greenhouse. Das

nd Jai [16] developed a model for liquid desiccant dehumidifica-

ion applications in which the maximum deviations of ±20% was

bserved. 

Study of literature revealed that the current numerical and ex-

erimental data are limited to the narrow data scales. Such limita-

ion obstructs implementation of solar/waste energy driven dehu-

idification/regeneration cycle in real-life scenarios where multi-

le parameters vary simultaneously. The substantially high cost of

onstructing the experimental rigs for testing and analysis of these

ystems brings up further obstacles in exploring the system. Nu-

erical models are one alternative to experimental studies. How-

ver, despite being cost effective, numerical models often require

xtensive input parameters and complicated equations to be solved

hich are extremely time consuming. 

Therefore, to overcome the above-mentioned issues, a num-

er of studies have proposed statistical methods. The comparative

ummary of these literatures and their achievements are listed in

able 1 . 

Detailed investigation of the literature revealed a research gap

n utilizing full capacities of statistical modeling to predict perfor-

ance of dehumidification systems by considering the commer-

ialization of the this technology. Lack of a swift, accurate and eas-

ly done predictive tool, which can directly correlate the main pa-

ameters of this technology and predict the efficiencies of the sys-

em based on main parameters only, was an essence need. This

aper pioneers in bringing the Gaussian Process Regression (GPR),

hich has been applied to a wide range of fields [17-25] , as a

redictive tool to investigate the performance of a solar/waste en-

rgy driven dehumidification/regeneration cycle, as well as, to in-

roduce a new application for GPR. This, to the authors’ knowledge,

s the first statistical modeling study that applies GPR to investi-

ate the performance of dehumidification systems. The developed

PR model directly correlates the main operating parameters i.e.

emperature, relative humidity and flow rate of process air, tem-

erature of regeneration air, length of the desiccant bed, solar ra-

iation intensity and operating time with performance parameters

.e. moisture extraction efficiency for the dehumidification cycle

nd moisture removal efficiency for the regeneration cycle. 

In Section 2 , solar/waste energy driven dehumidifica-

ion/regeneration cycle, GPR methodology and dataset develop-

ent are explained. Then the model results including verification

nd applications are given in Section 3 . Eventually, the conclusion

s presented in section 4 . 

. Methods 

.1. Description of a dehumidification system 

Schematic of the solar/waste energy driven dehumidifica-

ion/regeneration cycle to be investigated in this study is shown

n Fig. 1 . A desiccant bed is located inside a channel that is con-

tructed by a porous and visible-light LiCl-Sillicon-Gels material

2] . The bed specifications such as its dimensions and material play

 key role in performance of both dehumidification and regenera-

ion cycles. In the dehumidification process, the humid air (also

alled as process air), flows inside the channel and passes through

he bed. The moisture of the process air is absorbed by the ab-

orbent material in the desiccant bed owing to the partial vapor

ressure difference between the solid absorbent surface of the bed

nd the process air. By flowing the process air through the des-

ccant bed, the absorbent material will gradually reach its satura-

ion state. The regeneration process starts to regenerate the satu-

ated absorbent material for the next dehumidification cycle. Dur-

ng the regeneration process, either a high temperature regenera-

ion air with a temperature more than 70 °C or a low temperature
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Table 1 

Summary of related studies. 

Study System Method Remarks 

Park et al. [26] Liquid desiccant system Response Surface 

Methodology (RSM) 

A model was derived based on the operating parameters that significantly 

affected the dehumidification effectiveness. 

Ou et al. [27] Liquid desiccant cooling and 

dehumidification system 

Effectiveness-NTU, 

Levenberg–Marquardt 

and unscented Kalman 

filter algorithm 

Experimental tests on a pilot plant revealed that the model can accurately 

predict the system performance under different operating conditions. 

Gandhidasan 

and Mohandes 

[28] 

Liquid desiccant 

dehumidification 

Artificial Neural Network 

(ANN) 

This study showed that the ANN can be used as a predictive tool with a 

reasonable degree of accuracy. 

Jani et al. [29] Rotary desiccant dehumidifier Artificial Neural Network 

(ANN) 

Performance predictions through ANN are compared with the experiments 

and a close agreement is observed. 

Current study A solar/waste energy driven 

dehumidification/regeneration 

cycle with a solid adsorbent 

bed 

Gaussian Process 

Regression (GPR) 

The developed GPR model provides a swift and highly accurate predictive 

tool for design of the dehumidification systems and for commercialization of 

the investigated dehumidification systems. 

Fig. 1. Solar/waste energy driven dehumidification and regeneration cycle. 
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egeneration air heated with the solar radiation passes through the

aturated absorbent. As the regeneration air passes through the

hannel, the heat is transferred from the regeneration air to the

ater inside the absorbent voids and evaporates water. Eventually,

he regeneration air transports the evaporated water out of system

nd the regenerated absorbent is ready for another dehumidifica-

ion cycle. When the solar radiation is not available, the regenera-

ion air is initially heated by an available waste heat. 

The system’s performance is identified by two main param-

ters: moisture extraction efficiency and moisture removal effi-

iency. Moisture extraction efficiency is the ratio of difference in

nlet and outlet moisture content of process air to inlet moisture
ontent of process air [2] : 

me = 

d p , in − d p , out 

d p , in 

(1) 

here d p, in is moisture content of inlet air and d p, out is the mois-

ure content of outlet air. 

and the moisture removal efficiency for the regeneration cycle

s ratio of difference in initial and final water content to initial wa-

er content of desiccant: 

mr = 

W i − w 

W 

(2) 

i 
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where W i is initial water content of desiccant and W is the final

water content of desiccant. 

2.2. Statistical model: Gaussian process regression 

Gaussian process regression (GPR) is a vigorous predictive tool

which is capable of providing a predictive posterior distribution of

outputs. This is a distinctive feature of GPR compared to the gen-

eral regression models, such as linear or polynomial regressions

which only estimate the value of the outputs. The GPR predicts

the posterior probability distribution by a prior probability and

then updates the prior probability distribution by training set. This

means that the posterior distribution includes the full information

of the prediction such as confidence level and prediction mean. A

detailed description of the GPR has been presented in [30] . The

main advantage of the Gaussian regression process is the way it

defines the model. The GPR determines the structure of the co-

variance matrix of the independent variables as backbone of the

model, while other regression techniques use the algebraic rela-

tionships of the independent and dependent variables [31] . 

For any training set as { D = (x i , y i ); i = 1,2,3, … n} where x i �
R 

d and y i � R . The Gaussian process is a prior over a function, f,

based on the Bayesian theorem: 

p ( f | D ) = 

p ( f ) p ( D | f ) 

p ( D ) 
(3)

The general regression model is given as: 

y = x T β + ε (4)

where β is a regression coefficient calculated from the training

data and ε ∼ N (0, σ 2 ). The error variance σ 2 is also calculated

using the training data. Simply for a Gaussian process with n ob-

servations, {x i ; i = 1,2,3, … n, x i � R 

d } and corresponding function

variables, { f(x i ) ; i = 1,2,3, … n}, the joint (zero mean) Gaussian ob-

servation is: 

p ( f ( x ) | x ) = N 

(
0 , σ 2 

)
(5)

The Gaussian process describes the distribution over functions

and it needs a covariance or kernel function and mean function to

be fully specified. 

f ( x ) ∼ GP 
(
m ( x ) , k 

(
x, x ′ 

))
(6)

The covariance function, defines the degree of correlation be-

tween the outputs of two input sets (x and x ′ ), and is the backbone

of the relationships between input variables. The mean covariance

and the kernel functions can be defined as Eqs. (7) and 8 , respec-

tively: 

m ( x ) = E [ f ( x ) ] (7)

ov 
[

f ( x ) , f 
(
x ′ 
)]

= k 
(
x, x ′ 

)
= E 

[
( f ( X ) − m ( x ) ) 

(
f 
(
x ′ 
)

− m 

(
x ′ 
))]

(8)

Selection of the proper kernel function is important as estima-

tion of the posterior distribution is significantly influenced by the

prior distribution. An appropriate kernel is chosen on basis of the

assumptions such as smoothness and likely patterns to be expected

in the data. There are a number of different kernel functions such

as: Matern, exponential, power-exponential, linear, intersection ex-

ist. In this study, one common kernel function, radial basis kernel

function is used: 

k 
(
x, x ′ 

)
= σ 2 

f exp 

[ 

−
i = n ∑ 

i =1 

x ( i ) − x ′ ( i ) 2 

2 θ ( i ) 
2 

] 

(9)
Where σ 2 
f 

is the signal variance and θ is the length-scale. Once

he prior kernel and mean functions are chosen, the GPR can be

mplemented to update the kernel and mean functions using the

bserved new dependent variable, y ′ , for the given new indepen-

ent variable, x ′ , by a new function, f ′ , to obtain the posterior esti-

ation function as below: 

 

([
f 
f ′ 

])
= N 

(
0 , 

[
K ( x, x ) + σ 2 I K 

(
x, x ′ 

)
K 

(
x ′ , x 

)
K 

(
x ′ , x ′ 

)])
(10)

 

(
f ′ 
)

= K 

(
x ′ , x 

) (
K 

(
x ′ , x 

)
+ σ 2 I 

)−1 
f (11)

ov 
[

f ′ 
]

= K 

(
x ′ , x ′ 

)
− K 

(
x ′ , x 

)(
K ( x, x ) + σ 2 I 

)−1 
K 

(
x, x ′ 

)
(12)

The posterior distribution is only Gaussian subject to the hyper-

arameters. It means that all of the kernel function parameters are

ssumed to be constant. In this study, the GPR analysis is carried

ut in R programing language 3.5.1 using the DiceKriging pack-

ge. The detailed information about the DiceKriging package can

e found in [32] . 

.3. Numerical model 

The numerical model used for data collection and GPR model

esting, is based on energy and mass balance equations for two

pecified control volumes i.e.: flowing air and desiccant bed parti-

les. A number of assumptions had to be made in order to simplify

he calculations such as: the heat and mass transfer is a one di-

ensional; heat conduction in flow direction is ignored; heat and

ass transfer coefficients between air and desiccant are assumed

o be constant; the solar radiation in regeneration process is uni-

orm; the heat and mass transfer coefficients between the air and

he desiccant are constant and; any air state change at inlet and

utlet of the system is ignored. 

The dehumidification system operation is modelled by the fol-

owing equations which are solved using finite element method in

atlab [2] . The mass balance for the flowing air stream is given

s: 

a fA 

(
∂ d a 

∂t 
+ u 

∂ d a 

∂z 

)
= K y C ( d d − d a ) (13)

where, ρa is density of the air, f is volume ratio of the air space

o the whole channel, A is the Cross-sectional area of the channel,

 a and d d are absolute humidity ratios of the air and desiccant

espectively, u is flow rate, K y is Coefficient of mass convection, C

s the perimeter of air flow passage, t is time and z indicates the

ow direction. 

The mass balance within the absorbent bed is given as: 

a ε ( 1 − f ) A 

∂ d d 

∂t 
+ ρd ( 1 − ε ) ( 1 − f ) A φ

∂W 

∂t 

= ρa ε ( 1 − f ) A D G 
∂ 2 d d 

∂ z 2 
+ ρd ε ( 1 − ε ) ( 1 − f ) A D s 

∂ 2 W 

∂ z 2 

+ K y C ( d a − d d ) (14)

where ɛ is porosity, ρd is density of desiccant, φ is Volume ratio

f desiccant, W is dry base water content, D G is gas phase diffusiv-

ty and D s is surface diffusivity. 

The energy balance within the flowing air stream is given as: 

ρa ( c p , a − d a c p , v ) fA 

(
∂ T a 

∂t 
+ u 

∂ T a 

∂z 

)
= αC ( T a − T d ) 

+ K y c p , v C ( d d − d a ) ( T a − T d ) (15)

where, c p, a and c p, v are specific heat capacities of air and water

apor respectively, α is convective heat transfer coefficient, T a and

 are the temperature of the air and desiccant bed respectively. 
d 
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Table 2 

Operating parameters and corresponding operation ranges. 

Operating parameters Ranges 

Temperature of the process air, °C 25–40 

Relative humidity of the both air, - 0.6–0.9 

Temperature of the regeneration air, °C 70–80 

Flow rate air stream, m/s 1–4 

Length of the desiccant bed, m 1–5 

Solar radiation intensity, W/m 

2 0–1800 

Operating time of each cycle, hr 1–5 

Table 3 

Discrete values of operating parameters. 

T p [ °C] RH p [-] T r [ °C] u [m/s] L d [m] I [W/m 

2 ] t h [hr] 

25 0.6 20 1 1 0 1 

27.5 0.678 70 1.5 2 600 2 

30 0.75 75 2 3 1200 3 

32.5 0.825 80 2.5 4 1800 4 

35 0.9 85 3 5 5 

37.5 90 3.5 

40 4 

e  

r  

d  

e  

f  

e  

s  

o  

a  

d  

t  

[  

c

 

i  

v  

m  

e  

t  

i  

i  

a  

t  

(  

a  

d  

o  

[

 

s  

b

 

 

 

 

VII. System performance prediction using the new inputs. 
The energy balance within the absorbent bed is given as: 

d c p , d ( 1 − f ) A ( 1 − ε ) 

(
∂ T d 

∂t 
− k d 

c p ρd 

∂ 2 T d 

∂ z 2 

)
= αC ( T a − T d ) + K y c p , v C ( d d − d a ) ( T a − T d ) 

+ K y C ( d d − d a ) q s + I . A / l (16) 

Where, c p, d is specific heat capacity of desiccant bed, k d is ther-

al conductivity of desiccant, I is solar radiation intensity and l is

he thickness of the absorbent bed. 

The initial temperature of flowing air and desiccant are constant

nd identical to the initial temperature of inlet air and, the cor-

esponding humidity ratios are also assumed to get the humidity

atio of the inlet air. The initial water content of desiccant is as-

umed to be 0.015 [kg/kg]. The boundary temperature and humid-

ty ratios at inlet for dehumidification and regeneration process are

ssumed constant for every time step. Moreover, the temperature

nd moisture content gradient at desiccant boundaries are zero. 

The heat transfer coefficient is given as: 

= 

( Nu ) ( k ) ( C ) 

4A 

(17) 

Where Nu is nusselt number, k is thermal conductivity. The

ass transfer coefficient is presented as: 

 y = ρa 
( Sh ) D 0 C 

4A 

(18) 

where Sh is Sherwood number and D 0 is Ordinary diffusivity. 

.4. Model evaluation 

Three common metrics are used to evaluate the prediction ac-

uracy of the GPR model: RMSE (root mean square error), MAPE

mean absolute percentage error) and R 

2 (coefficient of determi-

ation). Generally, RMSE measures deviation between the actual

alues and predicted values of the dependent variables, MAPE, is

sed to indicate the accuracy of the model for small changes in

ata and R 

2 is selected to measure the quality of the model by

easuring the proportion of the total variations. These metrics are

efined as: 

MSE = 

√ 

1 

N 

N ∑ 

i =1 

(
y i − y p i 

)2 
(19) 

APE = 

1 

N 

∣∣∣∣∣
∑ N 

i =1 

(
y i − y p i 

)
∑ N 

i =1 y i 

∣∣∣∣∣ × 100 (20) 

 

2 = 1 −
∑ N 

i =1 

(
y i − y p i 

)2 

∑ N 
i =1 ( y i − ȳ ) 

2 
(21) 

where N represents the number of observations, y i and y p i are

he actual and predicted values of the dependent variables, and ȳ

s the mean value of the actual measured dependent variables in

raining set. 

.5. Dataset development 

A comprehensive dataset comprising the selected key operating

arameters, and corresponding performance parameters is gener-

ted using the numerical model. It is vital to mention that the

perating parameters in current dehumidification system represent

he input data for statistical model. In this study, seven main op-

rating parameters (input data) and two performance parameters,

ased on a two-dimensional numerical and an experimental mod-
ls [2,10] , were selected. Temperature, relative humidity and flow

ate of process air, temperature of regeneration air, length of the

esiccant bed, solar radiation intensity and operating time are op-

rating parameters; and moisture extraction efficiency as the per-

ormance factor of dehumidification process and moisture removal

fficiency as the performance factor of regeneration process are the

elected performance parameters. To concentrate the model on real

perating conditions of the system, and to avoid unrealistic oper-

ting conditions, suitable ranges for each operating parameters are

etermined by a meticulous investigation of real operating condi-

ions in numerical and experimental literatures as listed in Table 2

2,10] . Flow rate and relative humidity of the air stream in both

ycles are considered to be same [2] . 

The comprehensive dataset is divided into two parts: 1) train-

ng set, and 2) testing set. Training set is used to train and de-

elop the model, and testing set is used to test the developed GPR

odel. Discrete values of operating parameters are needed to gen-

rate the comprehensive dataset. The values are randomly chosen

o construct the datasets only, and validity of the model is not lim-

ted to these values. Having identified the discrete values, as listed

n Table 3 , all possible combinations of the discrete values are cre-

ted to introduce all possible operating conditions of the system to

he GPR model. Fig. 2 illustrates three operating conditions out of n

6480) possible conditions in which 4320 are taken as training set

nd 2160 of them are specified as testing set. To build the depen-

ent part of the datasets, performance parameters for each created

perating conditions were calculated through the numerical model

2] . 

The flow diagram of the processes to develop the GPR model is

hown in Fig. 3 and the detailed process steps are summarized as

elow: 

I. Creation of operating conditions using the selected operating

parameters (input data). 

II. Generating the comprehensive dataset by the numerical

model. 

III. Classifying the comprehensive dataset into training and test-

ing sets 

IV. Training the GPR model employing the training set in R soft-

ware package. 

V. Testing the developed GPR model using the testing set. 

VI. Model evaluations by RMSE, MAPE and R 

2 metrics. 
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Fig. 2. Illustration of three operating conditions out of a total of N operating conditions. 
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Fig. 3. Flow diagram of the GPR model development. 
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3. Results and discussion 

This section presents the generated mathematical equation with

corresponding coefficients for both dehumidification and regener-

ation processes. The model evaluation by specified metrics and

model testing are also discussed. Finally, the three main applica-

tions of the produced GPR model are explained and investigated. 
.1. Produced engineering equations 

The GPR model is presented in the form of an exponen-

ial equation for both dehumidification and regeneration cycles.

he equation is purely constructed based on the selected op-

rating parameters only, and is used to predict the moisture

xtraction and moisture removal efficiencies. The equation is
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Table 4 

The coefficient and vector values of the GPR based model. 

N t Dehumidification cycle Regeneration cycle 

α θ a b α θ a b 

1 −4763.82 13.7 0.23 0.0024 −25,253.13 19.4 0.91 0.003 

2 3456.32 0.6 – – 47,221.24 0.6 – –

3 −12,140.8 2.36 – – −16,611.46 4.78 – –

4 −5001.25 3.61 – – 12,841.15 1.00E-10 – –

5 2408.33 96.7 – – −15,837.75 11.38 – –

6 −6672.55 1319.62 – – 8161.87 896.72 – –

7 −2705.09 1.74 575.37 0.86 

� � – – � – – –

4319 6695.32 – – 1325.65 – – –

4320 −10,506 – – 2624.53 – – –

(a) 

0 10 20 30 40 50 60 70 80 90 100
0.15

0.20

0.25

0.30

0.35  Numerical
 GPR

Operating conditions - testing set

M
oi

st
ur

e 
ex

tra
ct

io
n 

ef
fic

ie
nc

y 
(-)

 (b) 

0 10 20 30 40 50 60 70 80 90 100
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 Numerical
 GPR

Operating conditions - testing set

M
oi

st
ur

e 
re

m
ov

al
 e

ffi
ci

en
cy

 (-
)

Fig. 4. Comparison of the GPR model and numerical model results based on testing 

set (a): moisture extraction efficiency comparison, (b): moisture removal efficiency 

comparison. 
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Fig. 5. Comparison of the GPR and numerical model results based on training set 

(a): moisture extraction efficiency, (b): moisture removal efficiency. 
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β
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a 7  
epresented as: 

 = a + b ∗
N t ∑ 

i =1 

αi × exp 

β( i ) (22)

here a and b are constant coefficients, α is a vector specified in

able 3 , N t is the number of operating conditions in training set

nd y represents: 

 = 

{
ηme : f or d ehumid i f ication process # 

ηmr : f or regeneration process 
And the exponential power, β , is given in equation is calculated

s: 

( i ) = 

(
−

(
x 1 − T p ( i ) 

2 
/ (2 θ2 

1 ) 
)

−
(
x 2 − R H p ( i ) 

2 
/ (2 θ2 

2 ) 
)

−
(
x 3 − u ( i ) 

2 
/ (2 θ2 

3 ) 
)

−
(
x 4 − L d ( i ) 

2 
/ (2 θ2 

4 ) 
)

−
(
x 5 − T r ( i ) 

2 
/ (2 θ2 

5 ) 
)

−
(
x 6 − I ( i ) 

2 
/ (2 θ2 

6 ) 
)

−
(
x 7 − t h ( i ) 

2 
/ (2 θ2 

7 ) 
)

(23) 

here, θ is a vector specified in Table 3 , and x 1 , x 2 , x 3 , x 4 , x 5 , x 6 
nd x represent any new operating parameters i.e., temperature,
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Table 5 

Comparison of the metric values between the GPR and numerical model. 

Set Moisture extraction efficiency Moisture removal efficiency 

RSME MAPE R 2 RSME MAPE R 2 

Training 0.012 0.11 1 0.03 0.25 0.98 

Testing 0.045 0.21 0.98 0.082 0.39 0.97 

t  

c  

w  

i  

0  

a  

T  

t  

a  

c  

d  

b  

w  

f

relative humidity and flow rate of the process air, length of the

desiccant bed, temperature of the regeneration air and hourly op-

erating time of the system, respectively. Table 4 gives all the co-

efficients and vector parameters for both dehumidification and re-

generation cycles. 

3.2. Model testing 

The model testing is performed to test the developed GPR

model. The predicted performance parameters from GPR model

and from the numerical model [2] are compared. The compari-

son was performed under 2160 operating conditions in testing set.

The comparison results are presented in Fig. 4 for first 100 op-

erating conditions out of 2160 conditions. As it is seen in Fig. 4 ,

there is a close agreement between the predicted performance pa-

rameters by GPR and the numerical model results. The testing set

contributes to the generalization of the GPR model and indicates

that the GPR model is adequately trained. This feature also indi-

cated that the model is not restricted to the training set and thus

simultaneously controlled the model overfitting and complexity.

The comparison between numerical model and GPR predictions for
(a) 
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Fig. 6. Impact of four operating conditions on system’s performance (a) Operating time (h

ature of regeneration air ( °C). 
raining set are also illustrated in Fig. 5 for the first 100 operating

onditions out of 4320 conditions. The overall comparison results

ere evaluated by the selected metrics given in Table 5 . The max-

mum RSME and MAPE for moisture extraction were found to be

.045 and 0.21, and for moisture removal efficiencies to be 0.082

nd 0.39, respectively; and the lowest R 

2 was recorded as 0.97.

he close agreement of results between the two models and also

he very small error values proved the GPR model to be reliable

nd validated its results. Therefore, it can be concluded with high

ertainty that the model results are valid for any operating con-

itions constructed by the predefined ranges. Detailed comparison

etween different statistical approaches e.g., Artificial Neural Net-

ork (ANN), Support Vector Regression (SVR) and Kriging can be

ound in literatures [33,34] . 
(b) 
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.3. Application of the GPR based model 

This section presents three main applications of the GPR model.

he impact of four main parameters on the performance of so-

ar/waste energy driven dehumidification/regeneration cycle are

nalysed and discussed to demonstrate the model capability in

nvestigating the effect of different parameters. Additionally, the

oisture extraction and moisture removal efficiencies of the sys-

em are predicted for a number of randomly generated operating

onditions to prove model’s applicability in any random operat-

ng conditions. Eventually, the system’s performance is predicted

n two warm and humid climates to show the applicability of the

odel in real conditions. 

.3.1. Impact of the operating parameters on system’s performance 

Effect of four selected operating parameters, namely: hourly op-

rating time, relative humidity of the process air, solar intensity

nd temperature of regeneration air on performance of the system

re shown in Fig. 6 . In analysis of system performance based on

pecified operating parameters, other operating parameters were
0.38
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Fig. 7. Prediction of the system performance under randomly generated operating co
eld constant to observe the impact of the selected parameters

nly. 

To study the effect of operation time, the performance of the

ystem was predicted in three hours of the operation. As can be

een in Fig. 6 (a), moisture extraction efficiency decreases from 0.31

o 0.15 as time of operation increases. This is due to the fact that

n increase in operation time leads to more saturated desiccant

ed which leads to less heat and mass transfer from process air to

he desiccant bed. Contrarily, the moisture removal efficiency in-

reases over the same period. This is simply because an increase

n operation time contributes to more water evaporation from the

aturated desiccant bed. However, a slight decrease in slope of

he moisture removal efficiency is visible as the regeneration cy-

le eventually reaches the steady state. 

It can be observed in Fig. 6 (b) that both moisture extraction and

oisture removal efficiencies decrease when relative humidity of

he process air is increased from 60% to 90%. However, this trend

s more visible in the dehumidification cycle. This was expected as

he performance of the dehumidification cycle is highly dependent

n humidity of the process air. The operating time in this case was
(a) 

(b) 
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nditions; (a): moisture extraction efficiency; (b): moisture removal efficiency. 
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Fig. 8. Weather information; (a): Singapore; (b): Dubai. 
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1 h during which the greater relative humidity causes the desic-

cant bed to reach its saturation level faster. This seriously obstructs

the water absorption phenomena during the dehumidification pro-

cess and eventually leads to the decrease in moisture extraction

efficiency. 

In Fig. 6 (c), when solar intensity increases from 600 W/m 

2 to

1800 W/m 

2 , the moisture removal efficiency increases from 0.32 to

0.74 whereas the dehumidification process remains constant. This

trend was expected as in this particular case, temperature of the

regeneration air was kept at 20 °C and thus the solar radiation

plays the key role in water evaporation phenomena during the re-

generation process. 

Fig. 6 (d) illustrates the effect of regeneration temperature on

system performance. An increase in regeneration temperature from

70 °C to 90 °C leads to an increase in moisture removal efficiency

from 0.83 to 0.98. Whereas it does not have a significant effect on

the dehumidification efficiency. The reason for this is that the solar
adiation in this case was ignored and the warm regeneration air

as the main factor in water evaporation phenomena. Thus tem-

erature of the regeneration air directly influences the regenera-

ion cycle as the greater regeneration temperature contributes to

ore heat and mass transfer from the saturated desiccant bed. 

.3.2. Prediction of the system performance under randomly 

enerated operating conditions 

In this section, sixteen conditions were generated randomly to

imulate the performance of system. The moisture extraction and

oisture removal efficiencies of the system were predicted by GPR

odel. The model was run for one hour of operation and the dis-

rete values of the operating parameters that were used to gener-

te the operating conditions are listed in Table 6 . As can be seen in

ig. 7 (a), the moisture extraction efficiency was predicted to vary

etween 0.15 and 0.38 where the maximum and minimum lev-

ls occur in operating conditions 1 and 16 respectively. Comparing
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Fig. 9. Prediction of the system performance in warm and humid climate; (a): moisture extraction efficiency; (b): moisture removal efficiency. 

Table 6 

Randomly generated operating conditions. 

N T p [ °C] RH p [-] T r [ °C] U [m/s] L d [m] I [W/m 

2 ] 

1 25 0.6 20 1 1 600 

2 26 0.7 20 2 2 1200 

3 27 0.8 20 3 3 1800 

4 28 0.9 70 4 4 0 

5 29 0.6 80 1 5 0 

6 30 0.7 90 2 1 0 

7 31 0.8 20 3 2 1200 

8 32 0.9 20 4 3 1800 

9 33 0.6 20 1 4 600 

10 34 0.7 20 2 5 1200 

11 35 0.8 20 3 1 1800 

12 36 0.9 20 4 2 600 

13 37 0.6 20 1 3 1200 

14 38 0.7 20 2 4 1800 

15 39 0.8 20 3 5 600 

16 40 0.9 20 4 1 600 

t  

t  

t  

t  

t  

s  

1  

a  

l  

s  

t  

S  

a  

t  

o  

fi  

T  

a  
hese two conditions reveals that the first condition is drier than

he 16th condition, which has the most humid conditions among

he randomly generated operating conditions. This simply has led

he system to reach its lowest moisture extraction efficiency. For

he regeneration cycle, as can be seen from Fig. 7 (b), the system

hows the best performance in operating conditions 3, 8, 11 and

4. The reason for this performance lies in the fact that in the

bove-mentioned conditions, the solar radiation has the highest al-

owable amount, 1800 W/m, which is the main parameter respon-

ible for water evaporation. In contrary, the regeneration cycle has

he lowest moisture removal efficiency in operating condition 1.

imilarly, solar radiation in this condition, which is 600 W/m 

2 , is

lso the main effective factor in regeneration cycle. Among condi-

ions 4, 5 and 6, where warm air is responsible for the water evap-

ration from the saturated desiccant bed, the moisture removal ef-

ciency increase from 0.87 in condition 4 to 0.98 in condition 6.

his trend was expected as the temperature of the regeneration

ir was increased from 70 °C in condition 4 to 90 °C in condition 6.
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3.3.3. Prediction of the system performance in warm and climate 

weather conditions 

The model is used to predict the performance of the system

in warm and humid climates i.e. Singapore and Dubai and their

weather information [35] are shown in Fig. 8 . The average tem-

perature and RH humidity are chosen as input conditions of the

process air. Flow rate of process air is 1 [m/s] and length of the

desiccant bed is 1 [m]. The regeneration process is assumed to be

done by warm air only where the temperature of regeneration air

is 90 [ °C] and thus the solar radiation intensity is ignored. Addi-

tionally, the prediction is done for 1 h of operating time for each

cycle. 

The prediction is done for an entire year in Singapore but

for Dubai, the dehumidification system is needed from April to

November. The reason for this is that the average temperature and

relative humidity of the selected months should be within the pre-

defined ranges in Table 1 . The prediction results for both moisture

extraction and moisture removal efficiencies are shown in Fig. 9 . As

can be seen, the moisture extraction efficiency in Singapore ranges

0.25–0.27. The reason for this stability is the stable weather condi-

tions in Singapore all along the year where the average tempera-

ture ranges from 25 to 27.45 [ °C] and the relative humidity is be-

tween 0.82 and 0.9. Similarly, the moisture removal efficiency in

Singapore is relatively constant at 0.98. This is again because of the

stable inputs of regeneration air where the main impacting factor,

the temperature of regeneration air, is constant at 90 [ °C] and the

solar intensity is ignored. However, for Dubai, the moisture extrac-

tion efficiency ranged from 0.28 in August to 0.4 in April and the

moisture removal efficiency is between 0.96 in August and 0.99 in

November. The reason for relatively similar moisture removal effi-

ciencies in both cities lies in the fact that apart from the condition

of the desiccant bed happened during the dehumidification cycle,

the main effecting factor is the warm air temperature, which is

constant. 

4. Conclusion 

The authors were pioneered in bringing the Gaussian process

regression into investigation of the dehumidification systems. The

GPR model was first trained by a training set and then tested with

a numerical model through the testing set. Such kind of effort di-

rectly correlated the main operating parameters of the desiccant

system with the performance parameters. The selected operating

parameters were temperature, relative humidity and flow rate of

process air, temperature of the regeneration air, length of the des-

iccant bed, solar radiation intensity and operating time of the sys-

tem and the selected performance parameters were moisture ex-

traction efficiency for the dehumidification cycle and moisture re-

moval efficiency for the regeneration cycle. The model was tested

by a numerical model and was evaluated by three common met-

rics. The maximum RSME and MAPE were 0.045 and 0.21 for mois-

ture extraction, and 0.082 and 0.39 for moisture removal efficien-

cies, respectively; and the lowestR 

2 was 0.97. The developed GPR

model was employed to study the effect of four operating param-

eters on performance of the system, prediction of the performance

parameters under 16 randomly generated operating conditions and

warm and humid climates. The presented GPR model is prompt

and time efficient in performance prediction of the dehumidifica-

tion systems and is needless of heat and mass transfer equations.

The model can be used as a robust and reliable tool in design and

optimization of the dehumidification systems. 
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