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a b s t r a c t

Swift assessment of evaporative cooling systems has become a necessity in practical engineering ap-
plications of this advanced technology. This paper bypasses details of the performance process and pi-
oneers in developing a statistical model based on the multiple polynomial regression (MPR) to predict
the performance of a dew point cooling (DPC) system. Thousands of numerical and experimental data are
explored and the statistical model is produced. The developed statistical model correlates the perfor-
mance parameters with the key operational parameters, including the flow and geometric characteris-
tics. The selected operational parameters are, intake air conditions, including temperature, relative
humidity and flow rate as well as the working air fraction over the intake air, while cooling capacity,
coefficient of performance (COP), pressure drop, dew point and wet-bulb effectiveness are selected as
performance parameters. The considered geometric characteristics are channel height, channel interval
and number of layers in heat and mass exchanger. The model with different polynomial degrees is
assessed by R2, MRE and MSE metrics. The 8th degree polynomial model is selected. The maximum
relative error of the cooling capacity, coefficient of performance, pressure drop, dew point and wet-bulb
effectiveness are 6.1%, 7.54%, 0.07%, 3.54% and 2.53% respectively. Finally, as examples, the model is used
to predict the performance of the DPC system in random operating conditions and in a dry climate i.e. Las
Vegas. Model developed in this study would enable the swift prediction of the DPC system.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Indirect Evaporative Cooling (IEC) employs the advantage of
water evaporation to decrease the air temperature without
increasing the absolute humidity [1]. A new generation of the IEC,
Dew Point Cooling (DPC), can decrease the temperature of the air
down to its dew point, and thus achieves higher cooling efficiency
than the conventional IEC. This energy efficient technology is
established on a M-cycle heat and mass exchanger which basically
has the cross-flow or counter-flow types [2]. DPC with a well-
structured heat and mass exchanger (HMX) pre-cools the work-
ing air (or secondary air) prior to its diversion into the wet chan-
nels; this practice can decrease both dry bulb and dew point
temperatures of the air within the wet channels, thus achieving
g.zhao@hull.ac.uk (X. Zhao).
20e30% higher cooling efficiency compared to the conventional
IECs. Significant achievements have been made in numerical sim-
ulations and experimental testing of the DPC.

Through experimental studies, performance comparison of a M-
cycle a counter-flow and cross-flow heat exchangers for IECs has
been progressed by Zhan et al. [3]. It was found that cooling ca-
pacity of the M-cycle counter-flow DPC is 20% higher, dew point
efficiency and wet bulb efficiency were 15%e23% higher than that
of the cross flowDPC.Whereas the COP is 10% lower than that of the
cross flow cooler. A test carried out by Xu et al. [4] indicated the DPC
prototype achieved the wet-bulb cooling effectiveness of 114% and
dew-point cooling effectiveness of 75%, yielding a significantly high
COP value of 52.5 at the optimal working air ratio of 0.364. Bruno
[5] tested a prototype dew point cooler in both commercial and
residential applications and presented the performance character-
istics of the system. B. Riangvilaikul, S. Kumar [6] conducted and
experimental study on a DPC where the results showed that the
wet bulb effectiveness is in the ranges of 92 and 114% and the dew
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Nomenclature

Qcooling cooling capacity, W
COP coefficient of performance
DP pressure drop, Pa
dp dew point
T temperature, �C
RH relative humidity
U air velocity, (m/s)
Cp specific heat capacity, kJ/kg�C
Qm mass flow rate, kg/s
W electric power, kW
Dh hydraulic diameter, m
H channel height, m
Int channel interval, m
L number of layers
X Dependent variable
Y Independent variable
N Number of operating conditions
r residual
R2 The Coefficient of determination

Subscripts
dry, in intake of the dry channel

wb wet bulb
dp dew point
dry, out outlet the dry channel
fan fan
pump pump

Greek symbols
4 working air fraction over the intake air
3 effectiveness
r density, kg/m3

D difference between two states
lf coefficient of friction resistance
x coefficient of local resistance

Abbreviations
COP Coefficient of performance
DPC Dew point cooler
IEC Indirect evaporative cooling
MRE Maximum relative error
MSE Mean square error
MPR Multiple polynomial regression
SSE Sum square of errors
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point effectiveness is between 58 and 84%.
Among the numerical studies, Zhao et al. [7] found that the

performance of the DPC is greatly affected by the dimensions of the
airflow passages, air velocity and working-to-intake-air ratio. Cui
et al. [8] conducted a model on a novel counter flow DPC and the
results indicated that the system achieves higher efficiencies with
lower air velocity, smaller channel height, larger length-to-height
ratio, and lower product-to-working air flow ratio. Lin et al. [9]
developed a transient model for the counter-flow DPC which could
predict the product air temperature with maximum error of 4.3%.
Xu et al. [10] established a novel super performance DPC, by
removing the use of the channel supporting guides and imple-
mented the corrugated heat transfer surface, to indicate that
compared to the existing flat-plate HMXs with the same geomet-
rical dimensions and operational conditions, the new novel irreg-
ular exchanger for DPC could achieve 32.9%e37% higher cooling
capacity, dew-point and wet-bulb effectiveness, 29.7%e33.3%
higher COP, and 55.8%e56.2% lower pressure drop. D. J. Lin et al.
[11] presented an improved numerical model for the DPC and
revealed significant achievements. B. Riangvilaikul, S. Kumar [12]
studied the performance of a DPC system under various inlet air
conditions. Y. Wan et al. [13] compared two DPC with different air
flow configurations with maximum error of 6.0%. J. Lin et al. [14]
developed an experimental and numerical study to investigate the
convective heat and mass transfer process of a DPC. In another
study J. Lin et al. [15] developed a model to deeply investigate the
governing factors of a DPC with maximum discrepancy of 8%.

The review of all studies for DPCs endorses the great achieve-
ments in numerical simulation and experimental testing of a super-
performance DPC. However, an apparent gap is still in existence
between the research findings and engineering application of this
advanced technology. The current numerical and experimental
data are limited to the narrow data scales and also are expressed in
one-to-one parametrical correlative forms. This situation has
largely obstructed the wide and rational application of DPC tech-
nology in practical engineering in which multiple parameters vary
simultaneously across wide ranges of data scales. Furthermore, cost
of constructing the test rigs is an outstanding disadvantageous in
experimental study. Even though the numerical studies are eco-
nomic, they often include complicated and differential equations
and it is quite time consuming to use them.

Therefore, to overcome the above-mentioned problems, some
studies have proposed statistical methods to evaluate the perfor-
mance of evaporative coolers. Pandelidis and Anisimov [16] used
response surface methodology (RSM) for the Maisotsenko cycle
heat and mass exchanger. Four performance factors including
outlet temperature, specific cooling capacity, dew point effective-
ness, and the theoretical COPwere selected. Cui et al. [17] evaluated
the thermal performance of a counter-flow regenerative IEHX (in-
direct evaporative heat exchanger) by developing a performance
correlation based on the non-dimensional forms of the governing
equations. Sohani et al. pioneered in employing several statistical
methods i.e. artificial neural network (ANN), group method of data
handling (GMDH), genetic programming (GP), multiple linear
regression (MLR), and stepwise regression method (SRM) to opti-
mize [18] and compare [19] the IECs. Also, he analyzed desiccant
enhanced evaporative cooling systems [20] and cellulose evapo-
rative cooling pad systems [21], and found the best roadmap to
improve the power plants [22] with DPCs. Comino et al. [23]
developed a simplified model of cross flow IEC systems based on
collected experimental data. H. Sadighi Dizaji et al. [24] developed
an analytical model for three-stage regenerative M-cycle
exchanger. A. L�opez-Belchí et al. [25] used Artificial Neural Net-
works (ANN) coupled with Group of Method Data Handling
(GMDH) for the mini-channels. A. Pakari and S. Ghani [26] regres-
sion models are developed for counter flow dew point evaporative
cooling systems using numerical simulations and response surface
methodology.

Regression is a popular statistical method among the re-
searchers since it performs as a predictive tool to investigate the
relationship between dependent parameters and independent
parameters. Additionally, regressionmethod has numerous areas of



Table 1
Various classifications of regression analysis.

Type of Regression Definition

Univariate/Multivariate Only one/two or more quantitative dependent variables
Simple/Multiple Only one/two or more independent variables
Linear All parameters appear in the equation linearly
Nonlinear The relationship between the dependent variable and some of the

independent variables is nonlinear
Polynomial Regression The relationship between the dependent variable and independent

variable can be expressed by a polynomial function
Stepwise regression Builds a model by adding or removing the predictor variables,

generally via a series of T-tests or F-tests
Logistic Regression It is used to predict the probability of an event where

the result is binary that is either yes or no

Fig. 1. Heat and mass exchanger (a): heat and mass exchanger structure (b): Air stream
inside the wet and dry channels.
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applications such as engineering, physics and chemical science
[27], medicine [28], etc.

This research pioneers in bringing the multiple polynomial
regression (MPR) to develop a statistical model which performs as a
predictive tool for assessing the performance of the DPC with a
novel irregular heat and mass exchanger in different operating
conditions. The developed model is presented in the form of
polynomial equations which directly correlates the main opera-
tional parameters (i.e., intake air temperature, intake air relative
humidity, intake air flow rate and working air fraction over the
intake air) to the performance parameters of the DPC (i.e. cooling
capacity, coefficient of performance, pressure drop, dew point
effectiveness and wet-bulb effectiveness) by considering the
selected geometric parameters (i.e. channel height, channel inter-
val and number of layers). Additionally, the model is needless of
complicated heat, mass and associated auxiliary equations and
iteration processes.

The remaining part of this paper is structured as follows; section
2 provides a detailed statistical model description and develop-
ment. Section 3 describes the results obtained from this study
including the model validation, assessment and application of the
model. Eventually, section 4 describes the conclusion drawn from
this study.

2. Multiple polynomial regression model

MPR is one of the numerous regression methods which some
common types i.e. polynomial, stepwise and logistic are summa-
rized in Table 1. Main focus of the multiple regression is on
analyzing the relationship between one dependent variable and
more than one independent variables [29]. The term linear and
nonlinear describes the fact that the regression variables appear in
the approximated equation linearly or nonlinearly [30]. Addition-
ally, the regression model is called polynomial when the relation-
ship between the dependent and independent variables is
represented by a curve. In this study, the MPR is selected to develop
the statistical model for multiple independent variables.

2.1. Mathematical development

In order to develop a regression model, discrete values for in-
dependent variable and dependent variables are needed to
formulate the relationship between them. A real value of depen-
dent variable can be represented by Y and independent variables
are represented by X1, X2, X3, …, Xp where p represents the number
of independent variables. The fitted regression function can be
expressed as:

Y ¼ f
�
X1; X2;X3; : : :;Xp

�
(1)
A fitting method must be used to fit a model and calculate the
estimated values by the regression model based on the collected
data. The most commonly used method of estimation is called the
least squares method. To fit a set of data base, the least-squares
method minimizes the sum of squared residuals as presented in
Equation (2). The residual or sum square of errors (SSE) is the dif-
ference between the actual values and the estimated regression
values which is denoted by ri.

SSE ¼
XN
i¼0

�bYi � Yi
�2 ¼

XN
i¼0

r2i (2)

where, bY represents the predicted value of the dependent variable
by regression model and N represents the number of predicted
values. Form of the equation (1) must be chosen considering the
selected data and depending on their relationship. The selected
MPR employs the polynomial equations to predict the dependent
variables. The general form of the linear polynomial equation is:

Y¼ b0 þ b1Xþ b2X
2 þ…þ bmXn (3)

where, b1, b2, …, bm represent the unknown regression coefficients



Fig. 2. Operating parameters.

Fig. 3. Schematic of heat and mass exchanger.

Table 3
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which will be calculated using the selected data. Three common
metrics are used to evaluate the performance of the polynomial
regression: mean square error (MSE), coefficient of determination
(R2) and maximum relative error (MRE). The MSE and R2 are
defined as:

MSE¼ SSE
N

¼
PN

i¼0
�bYi � Yi

�2
N

(4)

R2 ¼1� SSE
SST

¼ 1�
PN

i¼0
�bYi � Yi

�2
PN

i¼0
�
Yi � Yi

�2 (5)

where SST is sum square of total, Y is the mean of predicted value.
Table 2
Range of operating parameters in MPR.

Type of parameters Operating parameters Range

Flow characteristics T (�C) 25e45
RH (�) 0.125e0.5
U (m/s) 0.3e3.3
ɸ (�) 0.1e0.9

Geometric characteristics H (m) 1e3
Int (m) 0.004e0.008
L (�) 100e200
2.2. Development of multiple polynomial regression model

2.2.1. The novel super performance dew point cooler
In this section, the explanation of a selected counter flow DPC is

provided. A counter flow DPC is normally constituted of a heat and
mass exchanger, product and exhaust air fans, water supply and
distribution system (such as water distributor, circulating water
pump, water tank and tap water piping, etc.). Among which, the
heat and mass exchanger is the key part of a DPC. The schematic
drawing of the heat and mass exchanger of the novel super per-
formance DPC is shown in Fig. 1. The heat and mass exchanger
consists of wet channels and dry channels. Two wet surfaces build
the wet channel and the adjacent two dry surfaces build the dry
channel. The corrugated heat transfer surfaces as replacement of
Values of operating parameters in the training set.

No. Of discreet
values

T (�C) RH (�) U (m/s) ɸ (�)

1 25 0.125 0.3 0.1
2 27.5 0.17 0.7 0.2
3 30 0.22 1.1 0.3
4 32.5 0.26 1.5 0.4
5 35 0.3 1.9 0.5
6 37.5 0.34 2.3 0.6
7 40 0.38 2.7 0.7
8 42.5 0.42 3 0.8
9 45 0.5 3.3 0.9



Table 4
Values of operating parameters in the validation set.

No. Of discreet
values

T (�C) RH (�) U (m/s) ɸ (�)

1 26.25 0.14 0.5 0.15
2 28.75 0.19 0.9 0.25
3 31.25 0.24 1.3 0.35
4 33.75 0.28 1.7 0.45
5 36.25 0.32 2.1 0.55
6 38.75 0.36 2.5 0.65

Table 5
Geometric parameters and water status of the heat and mass
exchanger in numerical model.

Parameters Value

Length (m) 1.2
Width (m) 0.348
Interval (m) 0.005
Number of layers 200
Water temperature (�C) 16
Water flow rate (kg/s) 18
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the traditional flat-plate surfaces leads to the increased heat
transfer area [10]. On operation, the intake air enters the dry
channel with specified temperature and humidity. While passing
the dry channel loses its heat to the adjacent wet channels which
leads to significant temperature drop. At the end of the dry channel,
the intake air is divided into two parts. The first one leaves the
channel as a product air and the second one transfers to the adja-
cent wet channels as a working air. The working air in the wet
channels receives considerable amount of heat transferred from the
dry channel and the moisture from the surface of the wet channels
as well. Eventually, after completing the heat and moisture tran-
sition, theworking air leaves thewet channel as an exhaust air with
high temperature and moisture.

Compared to the traditional flat plate heat and mass exchanger
used in the DPC, the novel heat and mass exchanger has the
following distinguished advantages:

� Removal of the channel supporting guides which leads to
significantly reduced air flow resistance.

� Implementation of the corrugated heat transfer surface as a
replacement of flat-plate surface which leads to increased heat
transfer area.

� A super performance wet material layer, i.e., Coolmax-fabric
generated a higher water absorption capacity, a higher diffu-
sion area and better evaporation effect.

� The high absorption capacity of the wet material layer created
an opportunity to implement the intermittent water supply
scheme that can minimize the water usage and water pump
power consumption.

As a result, under the standard test condition, i.e. dry bulb
temperature of 37.8 �C and coincident wet bulb temperature of
21.1 �C, the prototype cooler has achieved the wet-bulb cooling
Fig. 4. All possible operating conditions of
effectiveness of 114% and the dew-point cooling effectiveness of
75%, yielding a significantly high COP value of 52.5 at the optimal
working air ratio of 0.364, compared to the commercial DPC of the
same sizes (52.5 vs. 18) [4].

The above super performance DPC was developed through a
numerical simulation using a combined CFD and the finite-element
based Newton-iteration model [10] and a 4 kW lab prototype
experimentation work [4], a 20 kW pre-production system has also
been constructed and demonstrated at Sinogreen Ltd in China.
Regarding the simulation work, the CFD simulation was carried out
to determine the flow resistance (K) factors of various elements
within the dry and wet channels of the exchanger, while the finite-
element based Newton-iteration numerical simulation was un-
dertaken to investigate its cooling [10]. The numerical model in-
cludes: (1) energy balance equations within a dry element of dry
channel; (2) mass balance equations in a wet element of wet
channel; (3) energy balance equations of the airflow in the wet
element; (4) Conservation equations of water mass between the
inlet and outlet of a wet element. (5) Energy balance in a coupled
dry & wet elements and variation of the air's humidity ratio. Ac-
cording to the formula provided by the ASHRAE, standard perfor-
mance of the IECs can be evaluated using following equations [31]:

Qcooling ¼ Cp
�
Tdry;in �Tdry;out

�
ð1�4ÞQm;dr;in (6)

where Qcooling is cooling capacity, Cp is the specific heat capacity,
Tdry;in is the intake air temperature in dry channel, Tdry;out is the
outlet air temperature in the dry channel, 4 is the working air
fraction over the intake air and Qm;dr;in is mass flow rate of intake
air in dry channel.
selected discreet operating parameters.



Table 6
Discreet values of geometric characteristics for each geometric sets.

No. Of sets 1 2 3 4 5 6 7 8 9 10 11 12

H(m) 1 1 1 1 2 2 2 2 3 3 3 3
Int(m) 0.004 0.004 0.008 0.008 0.004 0.004 0.008 0.008 0.004 0.004 0.008 0.008
L 100 200 100 200 100 200 100 200 100 200 100 200
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COP ¼ Qcooling

Wfan þWpump
(7)

where Wfan and Wpump are the electrical power consumed by the
fan and the pump respectively.

εwb ¼ Tdry;in � Tdry;out
Tdry;in � Tdry;in;wb

(8)

where εwb is the wet bulb effectiveness and Tdry;in;wb is the wet-
bulb temperature of the intake air in dry channel.

εdp ¼ Tdry;in � Tdry;out
Tdry;in � Tdry;in;dp

(9)

where εdp is the dew point effectiveness and Tdry;in;dp is the dew
point temperature of the intake air in dry channel.

DP ¼
�
xþ lf

1
Dh

�
rU2

2
(10)

where DP is pressure drop, x is coefficient of local resistance, lf is
coefficient of friction resistance, Dh is hydraulic diameter, r is
density and U is the air velocity.
2.2.2. Determination of the operating and performance parameters
It is important to note that in this study the independent
Fig. 5. Relationships between the operating conditions
variables are represented by operating parameters and dependent
variables are represented by performance parameters. Seven key
operating parameters, as shown in Fig. 2, and five performance
parameters have been identified to trigger the regression analysis
and derive the statistical model for the DPC. The temperature,
relative humidity and air flow rate of intake air, and working air
fraction over the intake air as flow characteristics and channel
height, channel interval and number of layers as geometric char-
acteristics are taken as operating parameters. The reason for
selecting these operating parameters lies in the fact that they are
the main parameters which can be changed continually during the
real DPC operation. Thus, other minor flow and geometric charac-
teristics which are impossible to change during the DPC operation
with less importance are not considered. The schematic of the heat
and mass exchange are shown in Fig. 3. Five performance param-
eters to assess the performance of the DPC are cooling capacity,
coefficient of performance (COP), pressure drop, dew-point effec-
tiveness and wet-bulb effectiveness.
2.2.3. Determination of the proper ranges for operating parameters
To conduct the MPR, range of each operating parameters should

be determined. The ranges of each independent variable are listed
in Table 2 which have been determined referring to the previously
developed lab prototype testing of the DPC [4] and numerical
simulation [10]. These ranges will contribute to produce a realistic
data set for the model.
and the corresponding performance parameters.



Fig. 6. Influence of degrees on Metrics: (a): R2; (b): MRE; (c): MSE.
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2.2.4. Dataset development
The comprehensive dataset is divided into two sub sets: 1)

training set; 2) validation set. 80% of the comprehensive dataset is
selected as the training set and 20% is selected as the validation set.
Training set is used to train and develop the model and validation
set is used to validate the developed model. Each set comprises two
different parts: 1) Operating parameters; 2) Performance parame-
ters. Discrete values for the operating parameters are needed to
construct the independent part of the datasets. The discrete rates of
the operating parameters are chosen according to the accuracy and
sensitivity of the performance parameters [10]. As it is listed in
Table 3 and Table 4, the number of values for each operating pa-
rameters for training set and validation set are nine and six
respectively. The discrete values of training set will be used once to
produce the model only and the model application is not restricted
to these values.

All possible combinations of the selected operating parameters
which represent all possible operating conditions for the selected
discrete values are produced for each set. All possible combinations
take all of the probable combinations of the discrete operating
parameters into consideration. Thus making the model aware of
any random operating conditions. In this study, the total number of
operating conditions are 7857 in which 80% of them, 6561 (94), are
chosen for training set and 20%, 1296 (64), are chosen for the vali-
dation set. Fig. 4 shows how k discreet values of each operating
parameters can be combined which only three combinations out of
7857 possible combinations are illustrated here.

Having created the all possible operating conditions, the per-
formance parameters are calculated for each created operating
conditions to construct the second part of the dataset. The calcu-
lation is done by the numerical model using the created operating
conditions and the constant values in Table 5.

Because in real operating conditions, the geometric variables are
not changed continually, thus the comprehensive dataset is created
for twelve geometric sets to make the final equations more sensible
and organized. As can be seen in Table 6 each geometric set has
constant geometric parameters including channel height, channel
interval and number of layers. All calculations are done by a nu-
merical model previously developed to investigate the novel super
performance DPC by authors [10].

2.2.5. Regression model set up
Fig. 5 reveals the behavior of the operating conditions versus

each performance parameters. It is evident that theMPR is a proper
type of regression for DPC data as the relationship between the
operating conditions and the corresponding performance param-
eters can be demonstrated using a curve.

The MPR method was carried out in R software. The general
mathematical expression includes the regression coefficients and
flow characteristics. The regression coefficients which are derived
from the fitting function varies for each geometry sets and thus
considers the impact of geometric characteristics. Equation (11) is
the general form of the statistical model which is based on theMPR.

Y¼ b0 þ b1 �
�
Tn1;1 �RHn2;1 �Un3;1 �4n4;1

�þ b2 �
�
Tn1;2

� RHn2;2 � Un3;2 � 4n4;2
�þ…þ bm � �

Tn1;m � RHn2;m � Un3;m

� 4n4;m
�

(11)

where Y represents the performance parameters, T, RH, U and 4

represent the intake air temperature, relative humidity, air flow
velocity and working air fraction over the intake air respectively, b1,
b2, …, bm represent the regression coefficients. Power of each in-
dependent variable is represented by n in which n1 is for intake air
temperature, n2 is for intake air relative humidity, n3 is for the air
flow velocity, n4 is for the working air fraction over the intake air
and the second subscript for n which is shown by m is the number
of the coefficients. It is important to note that because the operating
parameters appear linearly in the equation, thus the regression



Table 7
Maximum relative errors of the MPR models.

Performance parameters MRE (%)

1st 2nd 3rd 4th 5th 6th 7th 8th 9th

Cooling capacity (W) 3197.36 1684.56 660.96 239.65 68.85 39.33 8.39 6.1 2.59
COP (�) 4421.66 2814.83 1038.02 623.98 180.78 85.83 46.46 7.54 2.9
Pressure drop (Pa) 241.04 14.34 2.42 0.6 0.21 0.12 0.086 0.07 0.07
Dew point effectiveness (%) 129.6 76.55 35.69 23.76 13.86 9.78 5.67 3.54 2.1
Wet bulb effectiveness (%) 135.71 53.53 27.98 15.18 8.95 6.43 4.30 2.53 1.16
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model is linear.

Table 8
Average errors and r-squared values of 8th degree MPR.

Dependent variables R-squared Average error (%)

Cooling capacity (W) 1 0.09
COP (�) 1 1.22
Pressure drop (Pa) 1 0.01
Dew point effectiveness (%) 1 0.12
Wet bulb effectiveness (%) 0.99 0.11

Table 9
Powers of general 8th degree polynomial equations.

m T RH U ɸ

n1,m n2,m n3,m n4,m

1 1 0 0 0
2 2 0 0 0
3 3 0 0 0
« « « « «

494 0 0 0 8
3. Results and discussion

3.1. Model assessment

In this section, nine MPR models with different degrees, i.e., 1st,
2nd,…, 9th have been considered and compared in order to choose
the optimum one, in terms of complexity and accuracy, for per-
formance analysis and design of the DPC system. Accuracy of the
MPRmodel is investigated in two general ways: 1) Changing degree
of the polynomial model; 2) Assessing the model performance by
different metrics [32]. Model complexity in MPR is controlled by
polynomial degrees. Larger degrees allows more complex predic-
tion functions and better fit to training data. However, it does not
necessarily lead to better performance of the model. Thus, three
common metrics [33], MSE, R2 and MRE, are selected to evaluate
the performance of several models with different level of com-
plexities. Five predicted performance parameters are compared
with those from the numerical simulation. Firstly, the model results
are assessed by R2 to investigate the level of correlation fitting. As
can be seen from Fig. 6(a), the R2 value has sharply increased by
increasing the polynomial degrees and has reached 1 for all of the
variables from 5th degree afterwards. Although R2 of 1 indicates
the good level of fitting, but it does not always lead to a goodmodel.
This is because R2 gets higher values by covering more operating
parameters so that other metrics are considered in model assess-
ment. As can be seen from Fig. 6(b), the maximum relative errors
(MRE) decrease for all variables by increasing the model
complexity. The sharp declines show the contribution of the model
complexity in enhancement of model accuracy. MSE of 10% are
specified as an acceptable margin in this study and the accepted
values are colored in green as listed in Table 7. Thus, in terms of
MSE, 7th degree for cooling capacity, 8th degree for COP, 3rd degree
for pressure drop, 6th degree for dew point effectiveness and 5th
degree for wet-bulb effectiveness can be selected. Therefore, in
terms of MSE, increasing the model complexity from aforemen-
tioned acceptable degrees leads to more complex model and does
not contribute to model accuracy. The trend is exactly the same for
the MSE values. As can be seen from Fig. 6(c), MSE for all variables
has declined by increasing the model degrees. For dew point and
wet-bulb effectiveness, all of the studied models are in favor as the
MSE values are close to zero. However, the appropriate models for
cooling capacity, COP and pressure drop are 8th degree, 6th degree
and 2nd degree respectively as the MSE values have approached
zero.

Consequently, having done all of the aforementioned analyses,
the accepted models for cooling capacity, COP, pressure drop, dew
point and wet-bulb effectiveness are 8th, 8th, 5th, 6th and 5th
respectively. All other model with higher degrees than the above-
mentioned accepted degrees are valid and more accurate. There-
fore, in order to have a solid single model for all of the five
performance parameters, the 8th degree MPR model is taken in
next sections to carry out the validation and test parts. Therefore, r-
squared values and average relative error values for the selected 8th
degree model are given in Table 8. Both r-squared values (0.99e1)
and average errors (less than 1.22%) indicate the quality and ac-
curacy of the 8th degree model.
3.2. Cross validation

In this section, cross validation is performed, firstly to validate
the selected model and, secondly to check the model overfitting.
The model has been generalized through the cross verification. It
means that cross verification shows the validity of the proposed
model for any new operating condition within the defined ranges.
Comparison of the predicted values by 8th degree MPR for each
performance parameter with corresponding values derived by
numerical model [10] are shown in Fig. 7. The validation is carried
out using the validation set and values in Table 5. Channel width,
water temperature and water flow rate which have less importance
in operation of standard DPC are used to operate the numerical
model only. Due to the numerous operating conditions of the
validation set, only 20 operating conditions (out of 1296 operating
conditions) are illustrated in the Fig. 7.

As can be seen, predicted values byMPR are overlappedwith the
numerical simulation values whereas the maximum relative errors
for cooling capacity, COP, pressure drop, dew point and wet-bulb
effectiveness are 1.73%, 3.31%, 0.05%, 3.53% and 3.48% respec-
tively. This indicates that MPR model has the satisfactory accuracy
and is not over-fitted. Therefore this regression model can be used



Table 10
Coefficients of 8th degree MPR model.

Geometric set Performance parameters m¼ 0 m¼ 1 m¼ 2 … M¼ 494

Y b0 b1 b2 Вm b494

1 Qcooling 3.807eþ04 �9.006eþ03 9.193eþ02 … �5.059eþ04
COP �2.354eþ03 5.113eþ0 �4.893eþ01 … �3.128eþ03
DP 1.298eþ03 �2.627eþ02 2.284eþ01 … �1.718eþ02
εdp 3.483eþ02 �8.201eþ01 8.251eþ00 … �1.368eþ01
εwb �4.996eþ01 1.133eþ0 �1.124eþ00 … �9.738eþ00

2 Qcooling 3.118eþ03 1.048eþ03 1.092eþ02 … �6.689eþ04
COP �2.287eþ03 5.186eþ02 �5.254eþ01 … �4.727eþ03
DP �1.661eþ02 1.046eþ02 �1.708eþ0 … 5.501eþ01
εdp 3.661eþ02 �8.634eþ01 8.701eþ00 … �7.692eþ00
εwb �3.839eþ01 8.032eþ00 �7.435e-01 … �4.384eþ00

3 Qcooling �4.378eþ03 1.075eþ03 �1.065eþ02 … �1.151eþ05
COP �1.016eþ03 2.057eþ02 �1.946eþ01 … �7.906eþ03
DP 2.590eþ02 �6.177eþ01 6.359eþ00 … 4.164eþ01
εdp 2.652eþ02 �6.249eþ01 6.297eþ00 … �1.895eþ01
εwb �1.707eþ01 3.785eþ00 �3.788e-01 … �2.939eþ01

4 Qcooling �3.821eþ02 �2.462eþ02 8.092eþ01 … �2.372eþ05
COP 2.903eþ03 �6.294eþ02 6.052eþ01 … �7.800eþ03
DP 3.051eþ03 �7.324eþ02 7.660eþ01 … 2.071eþ02
εdp 2.387eþ02 �5.608eþ01 5.630eþ00 … �1.610eþ01
εwb �1.453eþ01 3.461eþ00 �3.493e-01 … �2.125eþ01

5 Qcooling 1.351eþ04 �3.454eþ03 3.597eþ02 … 8.692eþ03
COP �6.549eþ02 1.348eþ02 �1.280eþ01 … �1.162eþ03
DP 1.026eþ03 �2.475eþ02 2.590eþ01 … 3.402eþ01
εdp 3.906eþ02 �9.235eþ01 9.328eþ00 … 9.135eþ00
εwb 2.461eþ00 �7.326e-01 7.598e-02 … 2.712eþ01

6 Qcooling �1.248eþ04 1.512eþ03 �9.795eþ01 … 1.076eþ05
COP �1.485eþ02 1.117eþ01 �4.411e-01 … �2.809eþ03
DP �2.296eþ03 4.556eþ02 �3.865eþ01 … 9.069eþ01
εdp 1.017eþ02 �2.411eþ01 2.298eþ00 … 2.107eþ01
εwb �8.642eþ00 1.014eþ00 �4.549e-02 … 4.398eþ01

7 Qcooling �1.278eþ04 3.001eþ03 �3.134eþ02 … �1.183eþ05
COP 3.071eþ03 �6.890eþ02 6.563eþ01 … �6.401eþ03
DP �4.816eþ03 1.144eþ03 �1.172eþ02 … �8.053eþ01
εdp 3.157eþ02 �7.450eþ01 7.516eþ00 … �1.827eþ01
εwb �5.186eþ00 1.160eþ00 �1.229e-01 … �2.137eþ01

8 Qcooling �1.401eþ04 3.315eþ03 �3.284eþ02 … �2.136eþ05
COP 1.377eþ03 �2.511eþ02 2.489eþ01 … �1.714eþ03
DP 2.640eþ02 �3.346eþ01 5.031e-01 … 7.573eþ01
εdp 3.337eþ02 �7.868eþ01 7.944eþ00 … �2.812eþ00
εwb �1.621eþ01 3.606eþ00 �3.269e-01 … 2.961eþ00

9 Qcooling 1.596eþ04 �4.310eþ03 4.504eþ02 … 7.089eþ04
COP 1.765eþ02 �7.621eþ01 1.014eþ01 … �3.743eþ02
DP 7.107eþ03 �1.897eþ03 2.157eþ02 … �6.753eþ02
εdp 4.144eþ02 �9.783eþ01 9.872eþ00 … 2.994eþ01
εwb 2.766eþ01 �7.527eþ00 8.420e-01 … 6.029eþ01

10 Qcooling �1.251eþ04 8.453eþ02 �3.641eþ01 … 2.437eþ05
COP �6.748eþ02 1.053eþ02 �6.987eþ00 … �1.935eþ03
DP �6.303eþ03 1.287eþ03 �1.089eþ02 … �7.345eþ02
εdp 4.235eþ02 �1.009eþ02 1.025eþ01 … 4.747eþ01
εwb �3.157eþ0 5.909eþ00 �5.084e-0 … 8.068eþ01

11 Qcooling �3.305eþ04 8.131eþ03 �8.888eþ02 … �9.191eþ04
COP 5.614eþ0 �1.372eþ02 1.327eþ01 … �4.929eþ03
DP 6.201eþ02 �1.663eþ02 1.865eþ01 … �2.395eþ01
εdp 3.404eþ02 �8.030eþ01 8.090eþ00 … �1.138eþ01
εwb 2.566eþ01 �5.993eþ00 6.013e-0 … �1.016eþ01

12 Qcooling �1.920eþ04 3.678eþ03 �3.309eþ02 … �1.104eþ05
COP �1.318eþ0 1.283eþ02 �1.574eþ01 … 1.845eþ03
DP 7.786eþ03 �1.816eþ03 1.850eþ02 … �1.772eþ02
εdp 3.655eþ02 �8.615eþ01 8.692eþ00 … 1.182eþ01
εwb �1.285eþ01 3.215eþ00 �3.287e-01 … 1.825eþ01

Table 11
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to replace the previous numerical and experimental models to
predict the performance of the DPC.
Random operating parameters.

No. Of discreet values T (�C) RH (�) U (m/s) ɸ (�)

1 33.75 0.28 1.7 0.45
2 36.25 0.32 2.1 0.55
3 38.75 0.36 2.5 0.65
3.3. Polynomial equations

The comprehensive MPR model obtained for the DPC is pre-
sented in Equation (12), which is the generalized form of Equation



Fig. 7. Cross verifications: (a): Cooling capacity; (b): Pressure drop; (c): COP; (d): Dew-point effectiveness; (e): Wet-bulb effectiveness.
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(11). The matrix on the left of equal sign represents the perfor-
mance parameters and on the two first matrices on right side of
equal sign, represent the regression coefficients and third matrix
represents the operating parameters. Power of each independent
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variable is denoted by n in which n1 is for intake air temperature,
n2 is for intake air relative humidity, n3 is for the air flow velocity,
n4 is for theworking air fraction over the intake air and the second
subscript for n which is shown by m indicates the number of
1;1 � RHn2;1 � Un3;1 � 4n4;1

1;2 � RHn2;2 � Un3;2 � 4n4;2

1;3 � RHn2;3 � Un3;3 � 4n4;3

«
1;m � RHn2;m � Un3;m � 4n4;m

3
7777777775

(12)



Fig. 8. DPC performance in the random operating conditions: (a): Cooling capacity; (b): Pressure drop; (c): COP; (d): Dew-point effectiveness; (e): Wet-bulb effectiveness.
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coefficients. The number of coefficients for Nth degree polynomial

with k variables is

0
@ kþ N

N

1
A�1,which is 494 for 8th degreemodel

with four operating parameters. It is important tomention that the
corresponding powers for each coefficient in general 8th degree
polynomial are listed in Table 9.

The equation varies for different operating conditions and for
different geometric sets. Table 10 gives all the regression co-
efficients to construct the 8th degree polynomial equations for
different geometric sets. The equations for five performance pa-
rameters can be used by substituting the proper coefficients in
Equation (12) and thus the performance analysis of the DPC is
possible for any operating conditions by considering the provided
ranges in Table 2. Since the total number of the coefficients for each
performance parameter are 494, thus the table is summarized.

3.4. Applications of the developed model

In this section, two applications of the developed MPR model
are presented. In the first case, the performance of the DPC is
predicted and discussed under random operating conditions. Then,



Table 12
Average weather information in Las Vegas.

Month T (�C) RH (�)

April 25 0.25
May 30 0.21
June 37 0.18
July 40 0.2
August 39 0.27
September 33 0.26
October 27 0.3

Fig. 9. Predicted performance of the DPC in Las Vegas: (a): Cooling capacity; (b): Pressure drop; (c): COP; (d): Dew-point effectiveness; (e): Wet-bulb effectiveness.
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the average monthly weather conditions of a dry climate is taken as
the second case to present another application of the MPR model.
The geometric set 2 is selected as dimensions of the system. The
DPC system performance will be predicted for aforementioned
cases by Equation (13) which is achieved through substituting the
coefficients of geometric set 2, from Table 10, in Equation (12) and
by applying the listed powers in Table 9. Values of operating pa-
rameters will be substituted according to the operating conditions
in each application.
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3.4.1. Prediction of the DPC performance in random conditions
Random operating conditions are created using Table 11. The

performance results of the DPC system are given in Fig. 8. As can be
seen, the cooling capacity, COP, pressure drop, dew point and wet-
bulb effectiveness of the system are predicted for the selected
conditions. The cooling capacity varies from 1857 (W) to 4693 (W)
in which the minimum and maximum cooling capacity values are
predicted to occur at 21st and 61st operating conditions. Similarly,
COP is predicted to change from 18.7 in 27th condition to 65.91 in
55th condition, pressure drop is predicted to change from 139.5
(Pa) in 1st condition to 242.6 (Pa) in 81st condition, dew point
effectiveness is predicted to change from 0.73 in 7th condition to
0.94 in 75th condition and eventually the wet-bulb effectiveness is
predicted to vary from 1.14 in 7th condition to 1.35 in 3rd condition.

3.4.2. Prediction of the DPC performance in a dry climate
Themodel is used to predict the performance of the DPC in a city

with a dry and hot climate i.e. Las Vegas. Seven months with
relatively low average humidity levels [34] are selected in which
the DPC can performwithout any pretreatment as listed in Table 12.
Intake air flow rate and the working air fraction over the intake air
are selected to be 1.5 (m/s) and 0.4 respectively.

The prediction of the DPC performance for the Las Vegas is given
in Fig. 9. As can be seen, the DPC has the best performance in terms
of cooling capacity and COP in June, July and August. The maximum
cooling capacity and maximum COP are predicted to obtain in July
which are 4065 (W) and 101 respectively. This is mainly because of
the high temperature of July when it is around 40 �C. The pressure
drop is relatively same during the operation and has reached the
maximum level of 118 (Pa) in August. The maximum dew point
effectiveness is occurred in August which is 0.88 (88%) and the
maximum wet-bulb effectiveness is predicted to happen in July
which is 1.28 (1.28%). On the other hand the DPC has the worst
performance in April and October where all of the performance
parameters have reached their minimum levels.

4. Conclusions

A statistical model based on multiple polynomial regression
(MPR) method was presented to predict the performance of a DPC
with a novel irregular heat and mass exchanger. Such kind of effort
in bringing the MPR into the DPC technology adds important
scientific values to characterization of the engineering process of
the DPC. The model is first trained and developed by a training set
and then validated with a previously developed numerical model
by a validation set. The multiple polynomial regression approach
has explored lots of numerical and experimental data and produced
the statistical model, and directly correlated the selected parame-
ters. The selected operating parameters were intake air conditions,
including temperature, relative humidity and flow rate as well as
the working air fraction over the intake air. The performance pa-
rameters were cooling capacity, coefficient of performance (COP),
pressure drop, dew point effectiveness and wet-bulb effectiveness.
Additionally, model was classified in different geometric sets by
considering the channel height, channel interval and number of
layers in heat and mass exchanger as geometric characteristics. The
model is also assessed by three common metrics i.e. R2, MSE and
MRE for different polynomial degrees and the 8th degree poly-
nomial was selected to perform in this study. The selected 8th
degree model can predict the performance of the DPC with 6.1%,
7.54%, 0.07%, 3.53% and 2.53% discrepancies for cooling capacity,
COP, pressure drop, dew point and wet-bulb effectiveness respec-
tively. The presented regressionmodel is swift in operation and can
be used in prediction, optimization and design of the DPC to
commercialize this technology.

This study has focused on prediction of the DPC performance
under different operating conditions. In the future studies, the
model can be employed to find the optimum geometric and flow
characteristics of the DPC system in different climates and oper-
ating conditions.
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