Software Open Access

The unmixing library: Interactive tools for spectral mixture analysis of multispectral raster data in Python

K. Arthur Endsley


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.3585979</identifier>
  <creators>
    <creator>
      <creatorName>K. Arthur Endsley</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-9722-8092</nameIdentifier>
      <affiliation>University of Montana</affiliation>
    </creator>
  </creators>
  <titles>
    <title>The unmixing library: Interactive tools for spectral mixture analysis of multispectral raster data in Python</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2019</publicationYear>
  <subjects>
    <subject>earth observation</subject>
    <subject>remote sensing</subject>
    <subject>spectral analysis</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2019-08-08</date>
  </dates>
  <resourceType resourceTypeGeneral="Software"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3585979</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.3585978</relatedIdentifier>
  </relatedIdentifiers>
  <version>0.2.4.dev</version>
  <rightsList>
    <rights rightsURI="https://opensource.org/licenses/MIT">MIT License</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;This is a library of interactive tools and functions for performing linear spectral mixture analysis (LSMA) and spatially adaptive spectral mixture analysis (SASMA). It supports parallel fully constrained least-squares (FCLS) mixture analysis over multiple processes, allowing for very efficient mapping of endmember abundances, both in the spatially adaptive approach and in regular LSMA.&lt;/p&gt;</description>
  </descriptions>
</resource>
438
52
views
downloads
All versions This version
Views 438438
Downloads 5252
Data volume 248.0 MB248.0 MB
Unique views 414414
Unique downloads 5151

Share

Cite as