
Enabling the data FAIRness of
version control systems

Cas Fahrenfort
casfahrenfort@gmail.com

November 26, 2019, 46 pages

Research supervisor: Zhiming Zhao, z.zhao@uva.nl

Host/Daily supervisor: Thijs Gillebaart, thijs@grasple.com

Host organisation/Research group: Grasple, https://www.grasple.com/

Universiteit van Amsterdam
Faculteit der Natuurwetenschappen, Wiskunde en Informatica

Master Software Engineering

http://www.software-engineering-amsterdam.nl

mailto:casfahrenfort@gmail.com
mailto:z.zhao@uva.nl
mailto:thijs@grasple.com
https://www.grasple.com/
http://www.software-engineering-amsterdam.nl

Abstract

Many kinds of different scientific data are being produced every day by research institutes across the
globe. Scientists are interested in using this data, but often have difficulties when trying to obtain
access to data that has been created and is stored by external organizations, due to incompatible data
management standards. The Findability, Accessibility, Interoperability, Re-usability (FAIR) principles
are guiding principles for scientific data management and stewardship, which have been developed to
facilitate knowledge discovery by introducing common standards for human and machine interaction with
data, utilizing Persistent Identifiers (PIDs) and metadata. Several technologies and services have been
introduced which leverage these principles. However, all aforementioned standards, technologies, and
services are intended for static data and do not provide adequate support for dynamic and evolutionary
data, e.g. software source code, which is often managed by Version Control Systems (VCSs) such as Git
and Subversion. This research investigated the current approaches to managing persistently identified
data through VCSs and found them to be lacking in diversity of supported VCSs and persistent publishing
systems, and proposed a novel system which allows for direct publishing of repositories from multiple
VCSs to multiple, external publishing systems through a web-accessed interface. This initial idea has
also been published as a poster in the 2019 eScience Proceedings [1], which originated from an industry
problem posed by Grasple [2]. Additionally, at the end of the thesis, several assertions and conclusions
about the state of the art of persistent publishing of evolutionary data, most notably software source
code, are made which detail important problems that need additional solutions.

1

Contents

1 Introduction 4
1.1 Data FAIRness . 4
1.2 Problem Statement . 6

1.2.1 Research Questions . 7
1.3 Outline . 7

2 Background 8
2.1 Technical Background . 8

2.1.1 Persistent Identifiers . 8
2.1.2 Digital Objects . 9
2.1.3 Digital Object Architecture . 9
2.1.4 ENVRI-FAIR . 11
2.1.5 Named Data Networking . 12
2.1.6 Version Control Systems . 13
2.1.7 Data Storage Systems . 14

2.2 Related Work . 15
2.2.1 Versioning of PID-enabled DOs . 16
2.2.2 Compositing multiple PID-enabled DOs . 17

2.3 Gap Analysis . 17

3 Architecture 19
3.1 Requirements . 19
3.2 Architecture . 20

3.2.1 Components . 20
3.2.2 Constraints . 22

4 Prototype 23
4.1 Technology Considerations . 23

4.1.1 Platforms . 23
4.2 Implementation . 24

4.2.1 Version Control Systems . 24
4.2.2 Publishing Systems . 24
4.2.3 Metadata Mapping . 24
4.2.4 Duplicate Publications . 25
4.2.5 Composite Publication . 25
4.2.6 Transactional Nature . 25

5 Results 29
5.1 Requirements Results . 29
5.2 Performance Measuring . 30
5.3 Other results . 34

6 Discussion 35
6.1 Research Questions . 35
6.2 Social Challenges . 36
6.3 Quality Control . 36
6.4 Novelty and Innovation . 37

2

CONTENTS

6.5 Additional Contexts . 37

7 Conclusion 38

8 Future Work 39

Bibliography 40

Appendix A List of Acronyms 43

Appendix B Additional performance data 44

3

Chapter 1

Introduction

Environmental research infrastructures are often built on a large number of distributed observational or
experimental sites, run by hundreds of scientists and technicians, financially supported and administrated
by a large number of institutions [3]. Each one of these distinct Research Institutes (RIs) produces large
amounts of important data used in research environments and publications, which are useful to many
researchers across the world. For example, a researcher at an atmospheric observatory might need
oceanographic data to create a prediction model for atmospheric movements. However, this required
data is gathered by an oceanographic observatory and not easily accessible outside of the organization.

If such a situation occurs in which an environmental researcher requires data from a different RI for
a study, they first need to find out whether the data exists, find out where it is stored, obtain access
and/or access rights to it, transfer the data to their own system, and finally build an application workflow
or data processing pipeline to utilize the data. Once their study is complete, they must publish some
form of identification or citation for the data that they used, alongside the results. However, these steps
are inherently time-intensive because they must be performed manually. Furthermore, they become
even more time-intensive due to the lack of standardized data management approaches, leaving data
consumers to repeat this entire process every time they require a data set from a distinct RI. Moreover,
data structures are not standardized leading to interoperability problems when combining different data
sets into a single workflow, requiring even more work to adjust the data to the desired format. Not
only large research organizations but also the data industry is beginning to struggle with carrying out
data-intensive tasks: studies have shown that up to 80% of the time of data scientists is wasted on data-
wrangling, and up to 60% of industrial data projects fail [4]. Therefore, advanced data infrastructure
and data management solutions are needed to alleviate these time-intensive tasks.

The Findability, Accessibility, Interoperability, Re-usability (FAIR) principles [5] [6] are guiding prin-
ciples for scientific data management and stewardship, which have been developed to facilitate knowledge
discovery by assisting humans and machines in their discovery of, access to, integration and analysis of,
task-appropriate scientific data and their associated algorithms and workflows [7]. These principles have
become increasingly important for the advancement of scientific research and industrial innovation be-
cause they are aimed at reducing time spent on data management and therefore enable researchers to
focus their efforts on improving the research itself.

The FAIR principles specify ways to make data sets more Findable, Accessible, Interoperable and
Re-usable. They emphasize machine-actionability since researchers are increasingly more reliant on
computational support when dealing with data due to the constant increases in size, amount and creation
speed. Making data easier to process by machines also reduces time spent on data management by data
consumers. Increased amounts of data FAIRness make it easier to work with data from third parties,
both for researchers and industrial workers. Applying these principles to existing legacy data storage
systems can reduce the amount of time spent on locating the data (Findability), provide clarity on
how to access the data (Accessibility), ease the combination of multiple datasets to obtain new insights
(Interoperability), and enable machine-assisted ’pattern recognition’ in the data so that workflows can
be re-used (Re-Usability).

1.1 Data FAIRness

To enable all of these actions, data should be FAIR [5]:

4

CHAPTER 1. INTRODUCTION

∙ To be Findable, data sets should be described by rich, contextual metadata, should be assigned a
globally unique and persistent identifier and be indexed in a searchable resource. Rich, contextual
metadata should describe exactly what the data represents, who created it, where it was created,
when it was created and what methods were used to create it. For example, the environmental
researcher from the example above might need a specific oceanographic data set created at a certain
time under specific conditions by a distinct instrumentation set. Being able to filter all available
data by these criteria using the metadata greatly reduces the search results and therefore time and
effort required to locate the correct data.

Being able to identify and access a specific data set at all times is crucial for open research
and innovation. For example, replication studies for verification of results need access to the same
data as the original study and therefore be able to identify and locate them. Furthermore, proper
attribution and citation of data sets used in research are important to allow people who invest time
into creating important data sets to receive credit for their work and stimulate others to do so as
well. Moreover, grant attribution is often based on (among other things) how many citations a
given work receives, which implies its importance. For these reasons, globally unique, persistent and
resolvable identifiers must be used when publishing data sets. Without such an identifier, accessing
the data sets from an organization from outside is very difficult, because data management practices
could be inconsistent between organizations. For example, one oceanographic observatory might
use a different metadata schema than another, leading to being unable to find two cited data sets
when using the same search query for both institutions. Furthermore, file names could be similar
between the two institutions, causing an inability to identify exactly which data has been cited.
Therefore, globally unique identifiers are needed which can only ever resolve to a single data set.

To be able to put the above into practical action, the data and metadata should be indexed
in a searchable resource, such as a data repository, which also provides a solution for resolving of
identifiers to the correct data.

∙ To be Accessible, (meta)data should be accessible using a standardized communications protocol,
so the users know how they can be accessed (including any possible authentication/authorization).
After identification of the correct data sets, acquiring and using the data itself is often difficult
due to distribution limitations because of rights and licensing issues. Furthermore, obtaining the
proper authentication credentials to physically access the data can often take long if it must be
manually approved by the data distributor. Therefore, standardized protocols to handle these
issues are needed to allow them to be performed by machines and speed up the processes involved.
Furthermore, persistent identifiers are crucial to harnessing the full potential of such protocols, as
they provide a globally resolvable identifier to reason about the data for the instances involved in
the process.

∙ To be Interoperable, (meta)data should use a formal, accessible, shared and broadly applicable
language for knowledge representation, to be able to interoperate with applications/workflows for
analysis, storage, and processing. If data representations differ between two systems, making them
communicate and work with the data from each other is difficult and time-consuming. By utilizing
commonly used, controlled vocabularies, automatic findability, and interoperation of data sets can
be ensured. For example, JSON-LD [8] is a standardized, machine-readable data representation of
Linked Data across the Web. These machine actions can be further developed by utilizing globally
unique, persistent and resolvable identifiers to access data sets from within scientific applications
and workflows.

∙ To be Re-usable, (meta)data should be richly described with a plurality of accurate and relevant
attributes so they can be replicated and/or combined in different settings, including clear and
accessible data usage licenses as well as detailed provenance information. For others to reuse your
data, they should know where the data came from (i.e. a clear story of origin and history), who
to cite and/or how they wish to be acknowledged. This principle is similar to the Findability
principle, however, this one focuses more on the legal side of metadata, as well as making sure that
data is actually useful for the data consumer.

FAIRness is not only important for basic, numerical datasets but also many more types of complex
and dynamic data which are used for research purposes, most notably [3]:

∙ Instrumentation and sensors

∙ Workflows

∙ Algorithms

5

CHAPTER 1. INTRODUCTION

∙ Data pipelines

∙ Data models

∙ Software/source code

Each of these digital assets is used in the creation and processing of scientific data and represents
some form of the encoding of knowledge. However, at the moment it is difficult to refer to these digital
assets in scientific works because there are no standardized mechanisms in place to do such a thing. This
creates a huge limitation when verifying and reproducing such works. For example, a researcher performs
a study on oceanographic data collected by a specific sensor. Sometime later, a different researcher wants
to perform a comparative study using data from the same sensor. If there is no unambiguous way to
identify the utilized sensor, it might be difficult, time-consuming and even impossible for the second
researcher to locate the sensor data and obtain access to it. Furthermore, the second researcher requires
access to the data processing workflow used by the first researcher, to verify if the method used was
correct and to ensure the same method was used in both experiments. Therefore, applying the FAIR
principles and philosophy to these kinds of data is needed to ensure these digital assets are referable in
a globally unique and persistent way, are described with rich contextual metadata and are indexed in
searchable resources.

It is important to note that FAIR in this context does not mean open, as in openly accessible to
everyone, in the same way, that e.g. the source code for open-source software is viewable and editable
by everyone. While FAIR specifies standardized ways to interact with digital assets, licensing and access
restrictions could still apply to data which is published in a FAIR way, which offers legal restrictions to
who is able to use it and in what ways.

1.2 Problem Statement

One of the most important properties of digital assets that evolve over time, such as algorithms, work-
flows, data models and software source code, is their versioning. Each version must be distinctly marked
and be described with sufficiently rich metadata, to provide a clear history and changelog fully cata-
loging the evolution of the digital asset, as well as its provenance details. Every company that manages
these kinds of digital assets utilizes versioning of data in some way, some even using complex versioning
systems. Version Control System (VCS) repositories are such a complex system for managing versioning,
provenance, distribution, quality assurance and transparency of data, as well as providing an environ-
ment for collaborative work among both research and industry organizations. Such repositories often
contain the entirety of the data for a single project or research effort and the systems that control them
are the main method of interaction with this data.

However, the FAIRness of such repositories is currently not fully enabled. Although open sharing of
software is commonly accepted and celebrated within the community (namely the open-source culture),
such sharing is generally not done using unique-identifier based or FAIR enabled systems. For example,
the currently most popular repository sharing platform is GitHub [9], which does not persistently store
data using globally unique identifiers, nor does it offer rich, contextual, searchable metadata. Further-
more, the current approaches to software development and common workflows used therein have not been
designed with FAIR in mind. For example, in an open education platform like Grasple [2], community
collaborators must provide content through proprietary systems built specifically for this purpose, which
are not generic and do not provide any standardized communication options, making interoperation with
existing systems used by the community collaborators difficult. Utilizing FAIR-based systems, content
providers could use their preferred working space to publish created content to a generic publication
space. Only a proprietary application space is needed to process and display the content to users, which
is obtained using standardized communication protocols. Creating generic spaces as described here not
only enables the FAIRness of this platform (allowing standardized searching of, access to and usage of
the open education data) but also lowers the barrier for creating FAIR-enabled data platforms.

Therefore, to enable the FAIRness of VCS repositories, data management solutions are needed to
effectively manage the dynamic evolution, i.e. versioning, of the data and other digital assets they
contain. These solutions must allow VCS repositories to be assigned globally unique identifiers and
rich, contextual metadata to comply with the FAIR principles. Currently, very few VCSs have (partly)
integrated solutions for assigning persistent identifiers to data set versions and publishing them to publicly
accessible publishing systems. This thesis will research what options exist for persistent publication of
VCS repositories, what options are needed but missing and try to provide technical solutions for this
problem, thereby introducing FAIRness into the world of version-controlled software development.

6

CHAPTER 1. INTRODUCTION

1.2.1 Research Questions

To tackle this issue, we try to answer the following research question:

How can existing Version Control Systems be connected to persistent identifier-based data manage-
ment systems?

To answer this question, we first try to answer the following sub-questions:

1. What are the state-of-the-art approaches to enable data FAIRness of Version Control Systems?

2. How can digital objects in VCS repositories be persistently published with Persistent Identifiers
(PIDs) and metadata?

1.3 Outline

In Chapter 2 we describe the background, including technical background and related work, of this
thesis. Chapter 3 describes the development of an abstract architecture for persistent publishing of VCS
repositories. Chapter 4 shows the implementation of this architecture. Results are shown in Chapter 5
and discussed in Chapter 6. Finally, we present our concluding remarks in Chapter 7 and future work
in Chapter 8.

7

Chapter 2

Background

2.1 Technical Background

2.1.1 Persistent Identifiers

When the World Wide Web was first introduced, its creator Tim Berners-Lee proposed to the IETF to use
the Uniform Resource Identifier (URI) as the naming scheme for describing identifiers for content on the
Web. The use of URIs was rejected by the IETF because it would not allow users to change the identifiers
of Web content when they moved to another location. Therefore, Uniform Resource Locators (URLs)
were chosen as the main identifiers for Web content. Although this way of retrieving Web content worked
well during the early stages of the Web, several studies have found that approximately 50% of the URLs
in scholarly publications fail to retrieve the digital content after a period of seven to ten years [10]. This
effect is known as ”link rot”, a situation in which a URL fails to retrieve digital content because its
location has been changed, and can be caused by several reasons [11]:

∙ The digital content has been moved to a different server and is no longer accessible through the
given URL

∙ The URL is accessible but now points to another digital object

∙ The website registration has expired

∙ The web server hosting the digital object has been changed to a different web address

∙ The website directory structure is rearranged

When a user is unable to resolve a URL to specific digital content, they are often not given any
information on the underlying cause. For example, if digital content has been moved to a different
location, and its URL now resolves to nothing, users are often presented with a 404 error (”Page not
found”). However, this page does not give any information on whether the content was moved to a new
location, what this new location is, where an alternative to the content can be found or whether the
content was effectively deleted from the Web. The user, therefore, has no idea how to respond to the
missing content. This problem led to the need for persistent identification of digital objects.

PIDs are in essence a permanent reference to a document, file, web page or another digital object.
Generally, PIDs are assigned and resolved by a service that is external to the data provider. The service
assigns a persistent identifier to a data object on the request of a user, after which the service guarantees
that whenever this identifier is resolved, it will provide some information about the object. Usually, this
information contains access methods and metadata about the digital object but could contain any other
kind of information. PIDs do not guarantee digital objects will be available forever, as the object might
be deleted by the data host due to e.g. data management costs, licensing issues, data inaccuracies or
any number of other reasons. However, if the object is deleted, the identifier should still be resolvable
(to what is known as a ”tombstone page”). Information about the data set can still be learned from
this resolution, such as provenance, contextual information, possible redirection to updated versions and
reasons for deletion.

PIDs often have different ”namespaces” which can be used to point to different sub-resolvers, much
like how URLs can have different sub-domains. These namespaces can be used to allow a single resolver
to resolve multiple top-level PIDs to several distinct resolvers that have their own PID resolution system
and separate repositories for storing data. This structure allows multiple different organizations to
resolve data using a single PID scheme, as long as they agree to uphold the persistence policies set by

8

CHAPTER 2. BACKGROUND

the top-level resolver [4].
Because of this need for persistent identification, the first PID systems emerged shortly after the

introduction of the World Wide Web itself. Over the years, several well known PID schemes have been
developed, each using a different approach and structure [3] [12]:

∙ The Handle System (HS) One of the earliest created PID systems, providing governance for top-
level namespaces. However, besides this, it does not provide any obligations concerning persistence
policies

∙ Digital Object Identifier (DOI) One of the most well-known PID systems due to its usage for
citing scholarly literature. It makes use of the Handle System and uses its namespace ”10.[sub-
namespace]/”

∙ Uniform Resource Name (URN) Unlike the Handle System, URNs do not use a common
resolver system. Therefore it is up to the user to know which resolver system to use, which has
been a severe impediment against the uptake of this system

∙ Persistent URL (PURL) PURL does not separate between the identifier and resolving mecha-
nism and has no single global resolving mechanism.

∙ Archival Resource Key (ARK) Initially, ARK was planned to enable decentralized resolvers.
However, ARK now relies on local resolvers which ARK-issuing archives have to provide and
maintain.

Several services provide the creation of a variety of different persistent identifiers, by allowing users
to upload content which is stored in repositories and assigned a PID. Some of the most notable are:

∙ European Persistent Identifier Consortium (ePIC) Based on Handles, ePIC PIDs can be
used for any data objects and data collections. Consortium members share services and APIs,
meaning that if one center is out of order, other centers can still resolve and distribute PIDs [3].

∙ DataCite A non-profit, community-driven organization that provides DOI services for research
data, including generation and allocation of DOIs and related metadata, and discovery services for
research data.

2.1.2 Digital Objects

Kahn and Wilensky [13] posed that after the introduction of the Internet something essential was missing:
the Internet Protocol specifies exactly how messages are sent between machines but do not specify what
kind of meaning these messages have. They say that humans only want to exchange ”meaningful entities”,
meaning entities that contain data that people want to talk about, work with, process, refer to, cite,
etc. Therefore, Digital Objects (DOs) as meaningful entities being subject of exchange and processing
needed to be developed since they are central for human and machine communication and the need to
identify and describe them to enable interpretations by both humans and machines [4].

PIDs and metadata were the basic building blocks that started the discussions that resulted in the
FAIR principles, and, as shown in Section 1.1, are a core part of FAIRness and its implementation. After
the formulation of the FAIR principles in 2014, the Research Data Alliance (RDA) Data Foundation &
Terminology Group started work on a core data model, which moved a step ahead of the FAIR principles
by writing a model of how the different aspects need to be related, known as DOs [4]. Shown in Figure
2.1, a DO is represented by a structured bit sequence (data) being stored in a repository, is referenced
by a PID and described by metadata.

2.1.3 Digital Object Architecture

Enabling the exchange of DOs and their processing faces some challenges. Data repositories are all
different and do not have a unified method of storing data. They could use files, clouds, SQL, NoSQL
or any number of storage solutions. Furthermore, the way data and metadata are related together can
differ wildly between repositories. Therefore, proposals were made for a digital object access protocol
[14] (Figure 2.2), which enables the exchange and processing of DOs in a way that is independent of how
repositories organize their data, thereby bridging these differences and achieving interoperability at the
level of data organizations, considerably reducing data-consuming costs [4]. For example, a researcher
wanting to process data from two independent oceanographic observatories will only have to write a
single data retrieval and processing workflow because these interactions are standardized across both
organizations.

9

CHAPTER 2. BACKGROUND

Figure 2.1: The notion of a Digital Object [4]

Figure 2.2: The concept of a Digital Object Access Protocol [4]

10

CHAPTER 2. BACKGROUND

To enable a logical extension of the Internet architecture that addresses the need to support infor-
mation management more generally than just conveying information in digital form from one location to
another, thereby enabling interoperability across heterogeneous information systems, the Digital Object
Numbering Authority Foundation [15] has developed the Digital Object Architecture (DOA) [16]. The
DOA specifies two core protocols for communication and three system components for managing Digital
Objects:

The Identifier/Resolution Protocol (IRP) is used for creating, updating, deleting and resolving
DO identifiers. Each identifier is of the form prefix/suffix and is associated with an identifier record
containing relevant ”state information” clients can resolve to. The identifier’s prefix is resolved to locate
the specific identifier/resolution service to be used (the suffix may be any bit sequence). An organization
may run its resolution system by having a prefix allotted to it.

The Digital Object Interface Protocol (DOIP) specifies a standard way for clients to interact
with DOs. The DOIP makes use of the IRP for associating identifiers with different elements of the
protocol. DOIP enables the provision of security by validating digital objects as well as ensuring integrity
via signatures. Basic operation clients may invoke on the DO services are defined; the addition of
operations is supported. Each DO must specify its type (which is extensible), enabling DOIP services
to identify allowable operations. Each type is associated with an identifier record that can be accessed
by the use of the IRP.

The Identifier/Resolution System provides the following services:

∙ allotment of unique identifiers to information structured as digital objects

∙ rapid resolution of identifiers to current state information of the digital object

∙ administration of the identifier records containing state information

The Repository System provides the provision of access to digital objects based on identifiers
(integrated security), as well as abstracting away the details of storage technologies from the client,
enabling a long-lived mechanism for depositing and accessing digital objects.

The Registry System stores metadata about digital objects which are managed by repository
systems.

From a data consumer perspective, these systems and protocols combine into a single, virtualized
layer on top of existing data storage systems, known as the Global Digital Object Cloud (Figure 2.3).
Consumers only interact with logical representations of DOs and any organizational complexity is hidden
away [4]. This means that, while data storage systems could become as complex as they desired, user
interaction using standardized access methods and standardized DO representations, which include PIDs
and metadata, does not change. Such a structure enables high levels of accessibility, interoperability,
and re-usability of stored data. Combining this with the registry and repository systems of the DOIP, a
high degree of findability is obtained as well, due to the standardized methods of accessing and searching
repositories using standardized communication protocols and metadata. Therefore, a high degree of
FAIRness can be achieved by combining these technologies.

2.1.4 ENVRI-FAIR

Several projects are now underway to combine the previously mentioned technologies and utilize them
for practical research applications. For example, ENVRI-FAIR is a recently launched project of the
European Union’s Horizon 2020 program (EU H2020) that connects the cluster of European Environ-
mental Research Infrastructures (ENVRI) to the European Open Science Cloud (EOSC), and aims to
provide a set of interoperable FAIR data services for all participating Environmental Research Institutes
that enhance the efficiency and productivity of researchers, support innovation and enable data- and
knowledge-based decisions [17]. They make use of a roadmap defined by the European Strategy Forum
on Research Infrastructures (ESFRI). This forum maintains a roadmap for the need for additional RIs in
Europe, as well as the needs of already existing ones, for the next 10-20 years, stimulating implementation
and improvements of these facilities [18].

ENVRI-FAIR wants to enable the FAIRness of all RIs mentioned in the ESFRI roadmap by utilizing
and combining all previously mentioned technologies, standards, and philosophies. Their methodology
includes [17]:

1. Defining community policies and standards across all stages of the data life cycle, aligned with the
wider European policies and with international developments.

2. Creating sustainable, transparent and auditable data services for each stage of the data life cycle,
following the FAIR principles, for all participating RIs.

11

CHAPTER 2. BACKGROUND

Figure 2.3: The Global Digital Object Cloud [4]

3. Implementing prototypes for testing pre-production services at each RI, leading to a catalog of
prepared services.

4. Exposing the complete set of thematic data services and tools of the ENVRI cluster to the EOSC
catalog of services.

The ultimate ambition of ENVRI-FAIR is establishing the foundations of a virtual, federated machine-
to-machine interface that provides access to environmental data and services from contributing RIs. This
interface (known as the ENVRI-hub, see Figure 2.4) is to be realized as the services across RIs and even
between environmental sub-domains become progressively more integrated. By following a modular
design, existing services can be re-used across RIs when developing new ones. EOSC services such
as Authentication and Authorization Infrastructure, data storage solutions and catalog of services are
available to all users to enable the seamless integration of ENVRI data and services into the EOSC. For
users that require a broader or full spectrum of environmental parameters, the ENVRI-hub will offer a
single platform that hides the complexity and diversity of the ENVRI landscape, while preserving the
structure of the individual RI and continuing to fulfill the requirements of their designated communities
[17].

2.1.5 Named Data Networking

Another technology that is being developed concerning the FAIRness of digital objects is Named Data
Networking (NDN). NDN [19] is an implementation of the Information Centric Networking (ICN)
paradigm, which is founded upon the idea that users are interested in accessing data irrespective of
their locations. Many data-intensive applications are reliant on data that are either distributed over a
large number of different data providers (e.g. composing and collaborative editing of online education
or training material using community-contributed media) or being collected by distributed sources (e.g.
environmental observations from different geo-regions). When the sizes of these data objects increase,
the performance of the object sharing is critical for user experience.

While the FAIR principles specify a lot about data storage and management, they do not talk
about the distribution of digital objects. Centralized storage of data objects often creates performance
bottlenecks when a large number of distributed users tries to access the objects simultaneously, or when
a single user tries to access a large number of data objects. Object transfer speed is not only limited by
the services providing the data, but also by the network it is transferred over. During processing and
analyzing of data objects, data movements are frequent, especially when an application uses multiple
resources across multiple locations. Delivering large data volumes over traditional IP networks causes
severe delays to the execution of such scientific workflows because the Internet’s point-to-point underlay
is poorly matched to the data-centric overlay needed by data-intensive applications [20]. Therefore,

12

CHAPTER 2. BACKGROUND

Figure 2.4: The ENVRI-hub Architecture [17]

technologies that allow such efficient data transfer are needed in combination with FAIR-enabling data
management techniques to fully enable scientific progress and innovation.

In an NDN network, data is routed between source and destination based on unique names of data
objects and cached at intermediate locations to enable efficient distribution. Each digital object present
in the network has a unique name, and when an object passes a network node, its name and content are
stored in the cache, so that whenever the same object is requested again, it can be immediately delivered
from the cache. If an object is not present in the cache, the network node it is requested from uses its
internal routing protocol to find the next node on the path to the source of the digital object, until a
node with the object in its cache or the object’s source is found. The object is then returned to the
original node by tracing its path backward. To integrate such a network with FAIR enabled technologies,
authors of [20] have proposed an architecture for distributing DOs utilizing PIDs as defined in the DOA
via NDN (Figure 2.5). This architecture consists of

1. PID2NDN gateway, which resolves PID names to NDN names

2. NDN4PID router image, NDN node implementing a virtualized NDN router

3. NDN4PID manager, automating the management of the virtualized NDN overlay on other cloud
or network infrastructures

Figure 2.5 also illustrates how such an NDN network would be able to be combined with DOIP
technologies, most notably the Repository and Registry systems. The PID2NDN interface acts as a
bridge between the DOIP system and NDN network nodes, by translating PIDs to NDN names and vice-
versa, thereby allowing the transfer of digital objects from the DOIP repositories to the NDN network.
Different mapping architectures for resolving PIDs to NDN names and vice-versa are being developed to
optimize the efficiency of such data distribution [21].

2.1.6 Version Control Systems

Data that are both changing frequently over time and being collaboratively worked on by multiple
parties at the same time are often managed by a VCS. Popular systems include Git [22], Mercurial [23],
Subversion (SVN) [24] and Concurrent Versions System (CVS) [25]. These systems allow users to edit
and synchronize their files while preventing losing any work when the same files are edited by multiple
people at the same time, by recording changes and employing different strategies to merge files when
both parties are finished editing.

A VCS typically defines a repository in which the files are stored and maintained. This repository
is often accessible through a web URL, and the VCS software allows for manipulation of the repository
through commands such as clone (copy the repository from the remote server to a local machine), push

13

CHAPTER 2. BACKGROUND

Figure 2.5: NDN-as-a-Service for PID architecture [20]

(send new changes to the remote server) and pull (check for and obtain new changes from the server),
among others. Each VCS has its distinct terminology for different versions of the repository (e.g. commit
in Git and revision in SVN). In this thesis, the term snapshot will be used to indicate such a repository
version.

Online platforms such as GitHub [9] enable users of VCSs to easily share their open-source repositories
with and receive contributions from other users. Such platforms often provide workflow integrations
for these contributions, such as pull requests which enable a contributor to request their version of a
repository to be merged into another one, and issue trackers which allow anyone to open discussions
about any issues they experience with the contents of the repository, or other topics such as possible
improvements. Other, more specialized, workflow integrations also exist, such as automatic building and
deployment of source code contained within repositories (usually seen in DevOps-enabled platforms).
However, at the moment it is not yet possible to assign a DOI or any other PID to software code
or packages using solely GitHub features [3]. In general, interoperability between VCS repositories
and persistent publishing technologies is very poor. Even though almost every piece of software being
developed right now utilizes some form of version control, not only for industry but also for research
efforts, standardized methods for enabling the FAIRness of software source code, or any other kind of
data, developed in such a way are still in a state of infancy. However, a small number of FAIR data
storage systems have developed some form of interoperation with existing VCSs and VCS platforms.

2.1.7 Data Storage Systems

Several persistent data storage systems that implement the ideals of the FAIR principles and the DOA
in varying degrees have already been developed and are operational. These services are generally Web-
based Application Programming Interfaces (APIs) that expose endpoints to upload binary file data along
with metadata properties specified in JavaScript Object Notation (JSON) standard, after which a record
will be created containing the file (meta)data and also an assigned PID. Furthermore, they provide both
manual and machine-enabled searching for metadata. Each system also provides additional operations
to be performed on the stored records, e.g. file downloads, record deletion, and record versioning. For
the purposes of this thesis, several of these systems, which are freely accessible to everyone to both store
and browse data, have been selected and will be discussed in more detail below.

14

CHAPTER 2. BACKGROUND

EUDAT

EUDAT [26] addresses the needs of researchers, research communities and infrastructures who are pro-
ducing or using very large data sets for research purposes ensuring that the data is managed and stored in
a secure and professional and persistent manner. They provide an extensive service catalog for persistent
data storage aimed at a variety of use cases, both at an individual and organization level. The platform
is focused on being easily integrable with existing data and providing straightforward methods for the
harvesting of uploaded (meta)data.

Their B2SHARE service is an open RESTful API that can be utilized for creating data records,
supplying metadata and uploading binary files. Each record is assigned a unique, Handle-based ePIC
identifier, and the long-term persistence of data is guaranteed.

Dataverse

Dataverse [27] is an open-source web application and data repository which allows researchers to “share,
preserve, cite, explore, and analyze research data” [3]. It is open to researchers in all disciplines through-
out the world. Both DOIs and Handle system PIDs are supported and can be provided by either
DataCite or EZID (a service for minting DOIs and ARKs offered by the California Digital Library). The
open-source status allows any organization to host a Dataverse repository.

A Dataverse repository is the software installation, which then hosts multiple virtual archives called
Dataverses. Each dataverse contains datasets, and each dataset contains descriptive metadata and data
files (including documentation and code that accompany the data). As an organizing method, dataverses
may also contain other dataverses [27]. The Dataverse software exposes an HTTP API that can be used
to create and manage datasets. The Harvard Dataverse is open to all researchers worldwide in all
disciplines [28].

Zenodo

Zenodo [29] is an online open science platform and data repository developed within the OpenAIREplus
project, with CERN as the major developer [3]. They accept any research data from any discipline in any
kind of format, and anything uploaded is assigned a DOI, making data sets easily and uniquely citeable.
Uploaded material is curated for display on the front page, to further facilitate openness of data. They
also allow for the creation of data collections and accepting or rejecting uploads submitted to it, making
the maintenance of these data sets a community effort.

Zenodo offers to link a Zenodo and a GitHub account, allowing users to easily upload anything hosted
in a Git repository, whether it be data or software. This further facilitates finding data and source code
that has been and should be used together [3].

figshare

figshare [30] is a repository for sharing a wide range of research output types, including datasets, software
code, and posters. They guarantee at least 10 years of persistent availability of uploaded resources, as
well as the assignment of a DOI to each upload. In the spirit of linked open data, GitHub and figshare
accounts can be connected to facilitate finding data and the software that has been used to generate
process, or analyze the data, and might be needed to understand and use the data. The linking of
the two repositories was an early initiative to link resources stored in different repositories and was a
collaborative project between GitHub, Mozilla Science Lab, and figshare [3].

2.2 Related Work

As evident from Section 1.1, persistent identifiers are one of the core aspects of enabling data FAIRness.
The RDA has published many sets of recommendations for the management of FAIRly published data
and best practices regarding this topic. Although a lot of work has been done regarding FAIR data
management, PIDs and metadata, this is still an area of research that is in early stages and therefore
many aspects are still not clearly defined or do not have an overwhelming amount of agreement among
community members. This section will highlight some of these recommendations regarding PID usage,
which is particularly relevant when examining the transfer of data resulting from common VCS repository
actions, including versioning, releasing data subsets and managing dependencies, to FAIR-enabled data
storage systems.

15

CHAPTER 2. BACKGROUND

2.2.1 Versioning of PID-enabled DOs

One of these RDA publications is a set of consolidated assertions about the nature, creation, and usage of
PIDs, compiled by experts from 47 European research infrastructure initiatives [31]. The main purpose
of this publication is to identify agreements across existing documents that have been suggested to be
included by experts. It states that PID service providers have different practices when assigning PIDs
regarding the issues of granularity and versioning, and most do not make clear which policies they apply,
particularly in respect to the recommended timing of assignment and granularity needed. A few of the
collected assertions are:

1. Repositories need to clearly state which policies they follow in terms of granularity, versioning,
time of PID assignment, binding, etc.

2. Previous and subsequent versions can be indicated as machine-readable types in the PID record. If
standardized, typed attributes are used to refer to previous and subsequent DO versions, machines
can interpret and process this information to increase efficiency.

3. Implement a version-management policy: either the change history of the digital object needs
to be documented, or the identifier should be versioned, or both should be done. If a resource
is removed, the PID should resolve to a ”tombstone” page, containing still relevant information
about the object and reasons for deletion.

4. Manage complex life cycles without deletion (of PIDs). Generated and publicly advertised PIDs
must never be reassigned to a different resource or be deleted. There exist differences between
static records such as experimental data and dynamically evolving records such as software source
code or concept descriptions (which are likely to be versioned).

5. PIDs should be assigned to the smallest subsets of scientifically meaningful data that is practical
to refer to, to optimally support citation and later re-use. This has a direct consequence on the
granularity of data versions.

Furthermore, this publication states that there is an ongoing debate on the best solution for the DO
versioning problem and how PIDs could be used efficiently. Some will assign PIDs for each new version
of a digital object, in which case the PID registry should contain the history of a given digital object,
allowing end-users (humans or machines) to traverse the DO version history if needed. Others allow
versioning of DOs but do not assign a new PID, and instead append a version indicator the end of the
PID or utilize some other form of DO version management.

Another RDA recommendation provides a discussion on PID information types [32], and it also
examines what should happen when a new version of a DO is created, whether to assign a new PID and
how to connect the new and old PID. They specify three different sub-cases for this situation:

1. Old data ”A” must be replaced by new data ”B”. In this case, the old, no longer useful data A
must be erased and its new version, data B must be stored. The RDA recommends to assign a
new PID to B, and link the PIDs of A and B in some way (e.g. via metadata). A can optionally
be deleted and replaced with a tombstone page.

2. A user wants to access the latest version of the object ”A”. In this case, the user tries to access
object A via its PID and is interested in retrieving the latest version (as the object is versioned in
a way similar to sub-case 1). The system accesses A and determines its latest PID to object ”Z”
(through the links made by the system in sub-case 1). It then responds to the user with Z.

3. A user wants to access a specific version of object ”A”. They request the system to retrieve A, and
the system either replies with A if it is available or with the fate of A if it is not. Optionally, PIDs
for predecessors or successors are returned. Also optional, the system may enquire from the user
whether a newer version should be returned if available.

ENVRIPlus, an EU H2020 project (like ENVRI-FAIR mentioned in Section 2.1.4), published a doc-
ument [3] bringing together Environmental and Earth Systems Research Infrastructures in order to 1)
promote cross-fertilization between infrastructures, 2) implement innovative concepts and devices across
RIs, and 3) facilitate research and innovation in the field of environmental science for an increasing
number of users outside the RIs. This document details the state of the art regarding data practices
among environmental RIs and defines requirements and technologies which will be needed in the coming
years. From a two-to-five year analysis of the state of the art, this document concludes that a majority
of (starting-up) RIs adapt data curation strategies that are fully capable of handling dynamic data (both
versioned static files and truly dynamic databases), centered around persistent identifiers for both data

16

CHAPTER 2. BACKGROUND

and metadata objects and queries. However, versionable databases are needed to support “time machine”
retrieval of large datasets (also sensor data) that are dynamic. Some solutions in this area already exist,
but in general, well-planned and optimized data schemas are needed for storing transactions and their
timestamps to prevent significant losses in performance when generating and retrieving many versions
of stored data sets which are dynamic. For data stored as flat files, it is mainly the metadata which
must be stored in a database supporting versioning functionalities, to allow identification of what files
represent the current state at the time.

Another RDA recommendation has been published on the citation of evolving data [33], focused on
ways to create identification mechanisms that (a) allow identifying and citing arbitrary views of data,
from a single record to an entire data set in a precise, machine-actionable manner; (b) allow citing and
retrieving that data as it existed at a certain point in time, whether the database is static or highly
dynamic; and (c) is stable across different technologies and technological changes. This publication
recommends to build a data store which also stores the queries that are executed against it. All data
stored inside should be versioned, and operations on this data must be timestamped. The stored queries
are also timestamped and assigned PIDs. This approach allows identifying, retrieving and citing the
precise data set with minimal storage overhead by only storing the versioned data and the queries used
for creating the data set.

2.2.2 Compositing multiple PID-enabled DOs

Generally, a PID is assigned to a single DO. However, in some cases, it might be desirable to assign a
PID to a collection of objects or create an object which consists of multiple sub-objects (a composite
object). The RDA recommendation on PID information types states: No consensus exists regarding the
level of granularity at which PIDs are assigned to data objects. Different usage scenarios require different
granularities, and thus PIDs must become hierarchically structurable. If both individual objects and the
larger composite receive PIDs, then these implicit relations should be discoverable for humans but also
machine agents that for example copy or analyze objects [32].

An example use case is provided in which a user wants to create a composite object. In this recom-
mendation, users provide a list of PIDs to the system which then creates a new object that is assigned
a new PID and contains references to the objects that are composited. Should this composite object
be retrieved by a user, the list of composited PIDs is returned. If a regular object is retrieved, a list of
all super objects is returned to the data consumer. It is noted that the example use case assumes that
there is no previously existing super object with an already assigned PID and that the PID created for
the composite object does not point to a distinct object itself. This may not be the case for every data
community. Furthermore, some communities may have data collections with a large number of elements,
rendering the discoverability of this kind of super object impractical due to the number of required links
and PID operations. Moreover, hierarchies with multiple layers, where an object is simultaneously an
element and a super object can further complicate things.

2.3 Gap Analysis

Many issues regarding generation and assignment of PIDs and storage of DOs do not have a clear
consensus among field experts. For example, as discussed in Section 2.2, one RDA recommendation
states that PIDs should be assigned to the smallest subset of scientifically meaningful data [31]. However,
another recommendation states that different usage scenarios require different granularities, and there
can be no pre-defined level of granularity [32]. Because of these lacking points of consensus, these
problems concerning versioning of DOs, which is an area of work with little exploration done so far, do
not have clear, viable solutions or paths towards one. To create such solutions and thereby getting closer
to achieving consensus about these topics, more exploratory system design needs to be done.

While several tools and services for creating and managing persistently identified datasets have been
discussed in Section 2.1.7, options for FAIR-enabled publishing of VCS repositories are very limited.
Only two of these tools, Zenodo and figshare, allow users to directly publish VCS repositories, assigning
a PID to them. Both services allow users to link their GitHub account to instantaneously publish a
repository from its GitHub page. However, GitHub only hosts Git repositories, and no other VCS is
supported. If a different VCS is used, or the repository is not hosted on GitHub, the services are unable
to be utilized at all. This is a major limitation for many researchers wanting to use the systems, as
currently many different VCSs are appearing which are specialized for specific research disciplines, e.g.
DVC [34] for machine learning and Pachyderm [35] for data science. Therefore, to facilitate as many data

17

CHAPTER 2. BACKGROUND

consumers from varying fields of research to assign PIDs to data sets from version control repositories,
multiple Version Control Systems need to be supported by such tools.

Furthermore, Zenodo and figshare both publish all data objects to their repository and make it
accessible through their platform. However, this platform is certainly not the most fitting for every
dataset which is desired for publication. For example, datasets containing long series of high-frequency
sensor data can benefit from being stored using database solutions that support versioning of database
records, for ”time-machine” like extraction of data without much loss in performance. For data stored
as flat files, it is mainly the metadata that must be stored in a database supporting versioning, to allow
identification of what file(s) represent the “current state” of the data at a given point in time [3]. Benefits
in both performance, as well as ease of discovery and usability of the data objects, can be gained by
storing such datasets using specialized data storage services. Therefore, solutions for assigning PIDs
to version control repositories should not rely on a single form or provider of data storage, especially
because of the varying range of research disciplines, and therefore data storage requirements, that make
use of these tools.

18

Chapter 3

Architecture

3.1 Requirements

Section 2.3 details current problems regarding FAIR-enabled publishing of VCS repositories. To take
an initial step towards a definitive consensus about and solution for this problem, this thesis proposes a
system which allows publishing of repositories from multiple VCSs to multiple data publishing systems,
to enable as many researchers as possible to persistently publish, share and cite their research data
and software. Users of such a service will have certain expectations and needs regarding the provided
functionalities. From literature and sources discussed in Chapter 2, the following key requirements for
this service have been gathered:

1. Interactive VCS Content Composition The solution should provide a means for users to
interactively compose their desired content for publication, using an existing VCS repository, which
should be provided by the user. The users should be able to manage all content composition within
the system itself.

2. Multiple Publishing Service Support The system must offer means to publish the desired
repository content to a number of different persistent data publishing services, as well as handle
accessibility and authorization of the desired publishing system.

3. Metadata Standard Data citation methods must be flexible, which implies some variability in
standards and practices across different scientific communities. However, to support interoperabil-
ity and facilitate interpretation, the citation should preferably contain several metadata elements
that make the dataset discoverable, including author, title, publisher, publication date, resource
type, edition, version, feature name, and location. Finding standards for citing subsets of poten-
tially very large and complex datasets poses a special problem, as e.g., granularity, formats and
parameter names can differ widely across disciplines [3].

As the goal of this tool is to provide researchers from many disciplines with an easy method of
persistently publishing version control repositories, the metadata should reflect this. Every data
publishing system has its own metadata standard, and although there is a lot of overlap between
standards, the tool still needs to bridge the gaps between them. When publishing a repository to one
of these data publishing systems, their metadata standard needs to be respected. Therefore, a single
metadata standard is needed which can be mapped to each of the target metadata standards while
losing as little information granularity as possible. Alternatively, support for different metadata
schemas based on the targeted publishing system could be given.

Some of the most important additional requirements are:

4. Data Guarantees Persistent publication of digital objects is to a large extent dependent on
the publication service provider. Because the published data can only be accessed through the
publication service, it is important to consider what kind of guarantees data publishers give about
published data before making a publication. Not only guarantees about the retention period of
the data are important, but also aspects such as functional preservation, fixity, authenticity and
(meta)data access should be taken into consideration. Since the proposed tool offers persistent
data publication, users will expect to find similar guarantees.

5. Data Subsets A majority of the RIs feel it is necessary to allow unambiguous references to be
made to specified subsets of datasets, preferably in the citation, while few find the ability to create,

19

CHAPTER 3. ARCHITECTURE

identify, and later cite collections of individual datasets is important [3] [31]. This highly specific
attribution is needed because performance indicators that can be obtained from these citations are
used by funding agencies and other stakeholders. Therefore it is important for the tool to make
possible not only the publishing of full repositories but also individual subsets.

6. Data Dependencies Datasets and the software used to generate them are often maintained in
separate repositories. However, when citing such data, it is often desired to include the software
used, for verification and reproduction of the datasets. Therefore, the tool should provide an easy
method for linking multiple publications together.

7. Transactional Nature When dealing with any process which has permanent effects, it is im-
portant to consider the effects of each step of the process, and what happens when the process
does not complete in its entirety. The process of publishing a repository through the tool involves
multiple steps, among others the creation of a new record, setting metadata, uploading files and
finalizing the publication. Should any step of this process fail, any lasting side effects are undesir-
able. Therefore, each operation performed by the tool should be transactional, i.e. treated as a
single unit of work.

8. User Interface Surveys have indicated that the reasons for the slow adoption rate include a lack
of knowledge about the existing opportunities, confusion over their relative differences and merits,
and difficulties related to the identifier creation process (especially when it needs to be performed
on a large scale, as is often the case for data). The latter problem is to a large extent due to the
large variety in the design and functionality of PID registry user interfaces and APIs [3].

Because the target audience of the tool are researchers from varied disciplines, and different
publishing systems and their APIs are targeted, it is critical to have an easy to understand interface
that clarifies each step of the process in as basic terms as possible.

9. Performance For any data management system, performance is a cornerstone of effectiveness,
usability and general user experience, especially when dealing with large datasets. Performance in
this situation is not trivial to define and can have many different characteristics. However, it will
be important to compare the performance to existing systems like Zenodo and figshare to ensure
that, to those users to whom the features of the service are more applicable than existing systems
do not stay with their current solution because of lack of performance.

3.2 Architecture

3.2.1 Components

To establish the necessary components for such a publication tool, a possible workflow (seen in Figure 3.1)
for interaction with the tool is examined. This workflow shows the need for the following components:

∙ Interface component to handle user interaction with the tool

∙ Abstract component to obtain snapshots from multiple Version Control Systems

∙ Abstract component to publish data to multiple data publishing systems

∙ Connecting component to process publication request using the other components

The proposed architecture including these components is shown in Figure 3.2. In step 1, a user sup-
plies repository information (repository location, choice of VCS and metadata), publishing environment
information (which publishing system to use, access information) and publication metadata. In step 2,
the publication request is supplied to the main processing component. In step 3, the abstract snapshot
component obtains the snapshot from the external VCS repository. In step 4, the obtained snapshot
data is published to the external publishing system. The PID obtained from the publishing system is
then returned to the user.

An additional component, the publication database, is present in the system. This database holds
a record for each snapshot that has been published by the tool. Between steps 3 and 4, the obtained
snapshot is checked against the database to see if that particular snapshot has been published before.
If so, the location of the previously published digital object is returned to the user immediately. If
the snapshot has never been published before, a record is inserted into the database after step 4. This
component is added for performance considerations (avoiding having to do unnecessary work multiple
times) and to reduce unnecessary clutter in the publishing system’s repository.

With these components, the following requirements from Section 3.1 are (partly) satisfied:

20

CHAPTER 3. ARCHITECTURE

Figure 3.1: Data publication workflow using the proposed tool

Figure 3.2: Architecture for a prototype tool for persistently publishing version control
repositories

1. Interactive VCS Content Composition During step 1, the user can provide details about their
repository and interactively compose the desired data subset and possible repository dependencies
to be published.

2. Multiple Publishing Service Support During step 4, the abstract publishing component can
be adapted to interface with any possible publishing system that provides HTTP communication.

3. Metadata Standard The user can provide metadata at a single point which can be mapped to
all possible publishing systems during step 4.

4. Data Subsets During step 3, the snapshot component can obtain any arbitrary amount of data
from the VCS repository, and therefore it is possible to obtain any possible data subset. However,
the granularity of the possible subsets is determined by the options provided by the user interface.

5. Data Dependencies If enabled by the user interface, the user could provide information about
multiple repositories, and the processing component could combine the snapshots into a single
publication.

6. User Interface The user interface is an integral component of the proposed architecture.

7. Performance The publication database is a performance-enhancing aspect of the proposed ar-
chitecture. However, most performance characteristics will come from the implementation rather
than the architecture.

Persistent digital object publishing systems, as defined in the DOA [16], have two core components:
the registry system and the repository system. In the architecture proposed above, the external pub-
lishing system contains both the registry and repository systems. However, should the implementation
of this architecture gain enough popularity to warrant its evolution into a full-fledged service utilizing
its own storage and identifier solutions, it could be achieved by simply replacing step 4 with proprietary
components.

21

CHAPTER 3. ARCHITECTURE

3.2.2 Constraints

There are several constraints which must be kept in mind while implementing the proposed architecture:

1. VCS Abstraction The intention of the architecture is to allow the system to interoperate with
multiple Version Control Systems. To do this effectively, the VCS needs to provide an interface
exposing commands to allow for repository manipulation. As a result, only VCSs offering a sufficient
abstract interface that makes the required operations possible can be supported.

2. Publishing System Interoperability The second main intention of the architecture is to al-
low the system to interoperate with a multitude of external publishing systems. Therefore, the
technology chosen to implement the architecture should be able to communicate with all or most
publishing systems.

3. Accessibility The tool must be easily accessible by a large part of the target user group. Its
effectiveness will in large part be determined by how and by whom it can be accessed. This is an
important consideration when deciding what technologies to use for implementing the system.

22

Chapter 4

Prototype

To further analyze and explore the requirements of the architecture described in Section 3.2, a proto-
type has been developed. This chapter will cover the design choices and implementation details of the
prototype.

4.1 Technology Considerations

As described in Section 3.2.2, it is important to consider communication standards for existing publishing
systems. When looking for such systems, nearly all of the publicly accessible ones communicate over
HTTP using RESTful API standards. Therefore, to enable seamless integration, the same technology has
been used for building the prototype. Furthermore, such APIs are easily made available over the Internet,
allowing anyone in the world to reach them, enabling high degrees of accessibility. Moreover, exposing
a user interface over the Internet can easily be done using HTML and JavaScript, which also allows for
communication with the API over HTTP. Using these technologies, the interface can be hosted using the
same cloud technology as the API. By separating the user interface and processing logic/data storage
concerns, the portability of the user interface across multiple platforms is improved and scalability is
increased by simplifying the server components.

An alternative option would have been to distribute the tool as a stand-alone software package,
including both the interface and the underlying processing logic. However, the extra steps needed to
download and install the software are unnecessary, as all functionality can easily be implemented on
cloud-based systems. Furthermore, cloud technology allows (in most cases) for better performance than
user machines, both in processing power as well as scalability. Moreover, there are no performance
benefits to distributing the service this way, as the web-based user interface runs in the browser on the
user machine, meaning no extra delay is introduced when interacting with it.

4.1.1 Platforms

The API itself has been developed using ASP .NET Core, a cross-platform, high-performance, open-
source framework for building cloud-based, Internet-connected applications [36]. ASP .NET Core targets
the .NET Core framework and is developed in the C# programming language. This framework has been
chosen because it contains many user-created code libraries for executing commands on a multitude of
VCS repositories.

The user interface and API communication have been implemented using Angular, an open-source
framework for developing cross-platform, highly scalable web applications [37]. Angular is developed
in the TypeScript programming language, which is a strict syntactical superset of JavaScript. This
framework has many pre-conceived features to make developing interfaces and HTTP interactions fast
and simple.

Both the API and user interface are hosted using the Azure platform [38]. Azure is a cloud computing
service created by Microsoft for building, testing, deploying, and managing applications and services
through Microsoft-managed data centers. Azure has been chosen because it allows both hosting of static
webpages (the user interface) simply by uploading the files and because applications developed in ASP
.NET Core can be published to the Azure App Services platform with a single button click. These
features allowed for the rapid development of the prototype.

23

CHAPTER 4. PROTOTYPE

4.2 Implementation

4.2.1 Version Control Systems

The prototype supports two version control systems: Git and SVN. These systems have been chosen
because, according to the 2018 StackOverflow Developer Survey [39], they are the two most popular
version control systems in use today. Furthermore, they both expose interfaces with sufficient commands
for repository manipulations. A .NET Core package is available for Git, which enables quick manipulation
of repositories. SVN repositories accept commands over HTTP which allows for even faster manipulation
without the need to transfer all of the files first.

To increase the efficiency of data transfer and storage space usage, the actual files that are stored are
reduced to a minimally needed set of data to be able to use the repository. Git is a distributed VCS,
meaning that the full contents of the entire repository are stored in each distribution. The .git subfolder
contains all files necessary to maintain and manipulate the repository [40], including all objects that
have been committed to the repository at any point in time, stored in a special database file. Therefore,
only publishing this sub-folder is enough to allow the full reconstruction of the repository. SVN is a
centralized VCS, meaning that there is a single host server, called the ”remote repository”, which each
contributor commits changes to and pulls changes from. To be able to keep a repository intact without
any corruption, this entire remote repository has to be maintained. However, any local SVN repositories
(called ”working copies”), which contributors have to maintain on their own systems to be able to
communicate with the remote repository, and which do not contain information about every snapshot,
do not have to be stored at all.

To allow for the publishing of data subsets, the prototype includes a feature that, upon entering a valid
repository URL, retrieves a list of all known snapshots for this repository. The user is then provided with
a user interface detailing each snapshot and its file contents. They can then select the desired snapshot
to be published. In case the snapshot is from a Git repository, the snapshot is reconstructed, restoring all
files as they were. However, this reconstruction still contains a .git folder, as this is where the snapshot is
reconstructed from. This folder contains all data from the entire repository, most of which is not needed
to be published. Furthermore, the data which is needed to be published has already been reconstructed
into proper file formats (instead of being stored inside a Git database file). Therefore, the .git folder
can be dropped completely and is not published. If the snapshot is from an SVN repository, the specific
snapshot is checked out from the remote repository, creating a local working copy. This working copy
contains a .svn folder including some metadata about the snapshot. However, this data is not desired or
required to view or use the file contents of the snapshot. Therefore, it is also omitted during publication.

4.2.2 Publishing Systems

Three publishing systems, EUDAT - B2SHARE, figshare, and Harvard Dataverse, are supported by the
prototype. Each of these systems exposes an HTTP API and is freely accessible to anyone. Therefore,
any user can obtain credentials for making use of the services. Furthermore, they each offer API support
for creating publications and additional operations which allow for quick and easy integration into the
system. Moreover, they each provide options for metadata (although not all with a similar granularity
or richness), as well as automatic PID assignment (figshare and Dataverse both assign DOIs when
publishing, while EUDAT uses its own identifier scheme).

4.2.3 Metadata Mapping

B2FIND is a service which harvests metadata from a multitude of Research Institutions and creates a
mapping between the harvested metadata schema and a self-defined, homogeneous B2FIND schema [41].
B2FIND then allows users to search and find research data across scientific disciplines and research areas
- thus enabling an interdisciplinary perspective. The mappings between the RI and B2FIND schemas
is done manually, by opening a dialogue with the RI and coming to a mutually satisfiable conclusion.
Further research indicates that in the current state-of-the-art there is no tool to perform automated
metadata mappings, as each one requires human input. Therefore, a metadata mapping has to be
manually created for the prototype.

To create such a mapping, the different metadata standards from the three publishing systems have
been outlined in Table 4.1. For brevity, properties that are differently named but similar in interpretation
have been combined. As seen in the table, not all three publishing systems offer support for each metadata
property, and which metadata properties are required and optional also differs. Note that B2SHARE

24

CHAPTER 4. PROTOTYPE

contains two metadata fields which none of the other systems do: Community and Open Access. The
Community field is intended for a specific B2SHARE feature which allows users to publish data to
different categories in the B2SHARE database, called communities, each regarding a specific topic. As
the data submitted to the tool will be of varying disciplines, the default community which is suitable for
any type of data will be used for all publications. The Open Access field is required to denote whether
the data can be openly accessed by anyone. Both other systems also contain such a feature, however,
the accessibility is not set through metadata but a distinct API function. Therefore, the Open Access
field will be available in the tool’s metadata but handled separately for each system.

Currently, the most up-to-date, cross-discipline metadata standard is the one proposed by DataCite
[42]. It has been in constant iterative development since 2011 and is created in cooperation with the
entire research community. Table 4.2 shows the properties currently proposed by DataCite and their
usage by B2SHARE, figshare, and Harvard Dataverse. Some properties which are marked as shared
exist under a different name in the publishing system metadata properties, but their interpretation is
similar. Based on this table, a final metadata standard has been created which covers all three publishing
systems, seen in Table 4.3. This table shows, for each of the three publishing systems, which metadata
property has been mapped to which DataCite property. Most properties that are not shared between all
three services have been removed from the finalized standard. However, some properties (namely those
concerning publication date, language, and licensing information) have been kept, even if not all systems
support them. These properties are deemed to be of enough importance to remain included. When
submitting data to a system not supporting these properties, they will be left out of the submission.

4.2.4 Duplicate Publications

To reduce the number of unnecessary publications, the tool keeps track of all published repositories and
prevents duplicate publications. When the desired snapshot of a repository is obtained, a checksum is
calculated for it. This checksum is then checked against a local database containing every publication
that has been made, including their checksum and publication URL. When a duplicate checksum is
found, the already existing publication URL is returned to the user to facilitate the reusability of the
digital objects.

An obvious way to calculate such a checksum would be by, after cloning the repository snapshot
to the local drive, calculating a checksum for all files in the repository directory. However, due to
metadata in the files which are altered by the cloning process, the same repository will not obtain the
same checksum after distinct cloning operations. For this reason, internal variables of the VCS have to
be used (e.g. commit hashes in Git, and dump files in SVN). Unfortunately, this means the VCS is no
longer completely treated as a black box.

Storing checksums can be done either as a part of the repository publication or in a database local
to the tool. The first option would drastically decrease performance, as every single publication had
to be retrieved from a remote server to run a checksum comparison. The second option has better
performance, however, it requires the checksums to be stored at a location separate from the actual
persistent publication. Separation of (meta)data in this way could lead to problems if either one of the
data locations becomes compromised in some way. While the data publication system is generally (by
definition) guaranteed to be always available, the same can not be guaranteed about this tool.

4.2.5 Composite Publication

Besides publishing single repositories, the tool allows users to publish multiple repositories simultaneously
as a bundle, or a composite publication. This is useful for repositories which contain dependencies on
other repositories, and are therefore always required to be obtained together.

The bundle itself is published as a separate digital object, containing references to the repositories’
digital objects, which have been separately published. This separation enables composite publications
to reuse existing repository publications (duplicates), simply by referencing the existing publication in
the bundle instead of creating an entirely new publication.

4.2.6 Transactional Nature

To ensure the integrity of the publication repository, the tool’s publication process must be of a trans-
actional nature, meaning that either all steps of the process complete or none of them. If at any point
during the publication process an error occurs, all previously completed steps must be undone. This is

25

CHAPTER 4. PROTOTYPE

Table 4.1: Metadata properties used by the B2SHARE, figshare and Harvard Dataverse
publishing systems. Red properties indicate required metadata, black properties indicate
optional metadata.

B2SHARE figshare Harvard Dataverse

Community X

Title(s) X X X

Subtitle X

Alternative Title X

Description X X X

Author(s) X X X

Contributors X X

Depositor X

Open Access X

Embargo Date X X

Publication Date X X

Production Date X

Distribution Date X

Disciplines X X X

Keywords X X X

Tags X

References X X

Related Publications X

License X X

Contact X X

Resource Type X X X

Alternate Identifiers X X

Version X

Publisher X

Distributor X

Language X X

Custom Fields X

Funding X X

26

CHAPTER 4. PROTOTYPE

Table 4.2: Usage of DataCite metadata properties by the B2SHARE, figshare and Harvard
Dataverse publishing systems. Red properties indicate required metadata, black properties
indicate optional metadata.

B2SHARE figshare Harvard Dataverse

Identifier

Title X X X

Author X X X

Publisher X

Publication Year X X

Resource Type X X X

Subject X X X

Contributor X X

Date X X

Language X X

Alternate Identifier X X

Related Identifier

Size

Format

Version X

Rights X X X

Description X X X

Geo Location

Funding Reference X X

Table 4.3: Mapping of the finalized prototype metadata standard to the B2SHARE, figshare
and Harvard Dataverse publishing systems. Red properties indicate required metadata,
black properties indicate optional metadata.

B2SHARE figshare Harvard Dataverse

Title Title(s) title Title

Author Creators authors Author

Publication Year Publication Date timeline

Resource Type Resource Type defined type Kind of Data

Subject Disciplines categories Subject

Contributor Contributors contributors Contributor

Date Publication Date timeline

Language Language Language

Related Identifier Alternate identifiers references Related Publication

Rights License license

Description Description description Description

Keywords Keywords keywords Keyword

27

CHAPTER 4. PROTOTYPE

easily doable for single publications, where the final publication step is not made until everything else is
verified.

Difficulties occur when making a composite publication (publishing multiple repositories at the same
time). If an error occurs when performing the final step of the publication process, all previously published
repositories which are part of the current composite publication have to be unpublished. However, due
to the persistent nature of the publication systems that are used, this is not possible. Therefore, it
could be possible for the entire composite publication to fail while some of its repositories have still been
published.

28

Chapter 5

Results

5.1 Requirements Results

Chapters 3 and 4 have described an architecture for persistent publishing of version control repositories
to existing digital object publishing systems, and implementation of this architecture, meant to satisfy a
list of requirements posed in Section 3.1. This section will discuss whether each of the posed requirements
has been satisfied, and if so, to what extent.

1. Data Guarantees The heart of the proposed tool lies in the distribution of the version control
repository data to different publishing systems, which all bring different guarantees about the data
that is uploaded. Because the tool only acts as a bridge between the VCS and publishing system,
it does not store any data itself, but only facilitates its movement. Because of this, any guarantees
about the data after it has been moved are independent of the tool itself and therefore difficult to
provide to the user.

The only guarantees that can be established are those in the intersection of the guarantees
provided by each distinct publishing system, meaning those guarantees which are provided in
the same way by all of the publishing systems. However, listing these guarantees would be a
difficult and time-consuming endeavor, as some are abstract in nature and dependent on varying
conditions. Furthermore, providing these guarantees to the user would likely lead to confusion, as
each publishing system has additional guarantees not covered by the listing of the tool. Moreover,
not being able to provide a single, comprehensive list of all guarantees offered by the tool (because
there are multiple possibilities) also impairs the functional clarity of the tool.

2. Metadata Standard As described in Section 4.2.3, a singular metadata standard has been im-
plemented which covers all available publishing systems. Although a lot of overlapping metadata
properties are included in the final mapping, many important and more detailed properties are
excluded. As evident from this case, the different metadata standards for each publishing system
introduce difficulty when trying to create tools that create bridges between such systems.

3. Data Subsets By allowing users to choose a specific snapshot to be published, the tool provides
support for data subsets with a highly specified level of granularity, as the user themselves can
decide exactly what data goes into the snapshot. However, due to lacking metadata support
and versioning capabilities from the publishing systems, properly labeling these subsets becomes
difficult. Because of these difficulties, machine identification, as well as human identification of
these data subsets, is impaired.

4. Data Dependencies Due to the availability of composite publishing, labeling and storing depen-
dencies is possible. However, these dependencies are often stored in a rudimentary way. None
of the publishing systems used by the tool include a ”dependency” metadata field, and therefore
such dependencies have to either be included in the data itself (which is not always possible due
to licensing issues) or be stored in another, somewhat related field (e.g. the ”references” field in
figshare).

5. Transactional Nature For single publications, the processes employed by the tool are transac-
tional. However, when making composite publications, there exist certain conditions that breach
the guarantee of a transactional process. While this is not necessarily a problem for users, it can
lead to clutter and incomplete publications in the publishing system repositories (if these conditions
would occur in very large numbers). This can, in turn, affect the effectiveness of the repositories

29

CHAPTER 5. RESULTS

themselves, leading to a larger number of false positives when searching for data as well as longer
search times.

6. User Interface The tool provides a single user interface that spans all supported VCSs and
publishing systems. It is similar to many existing interfaces and forms found on the Internet,
which should aid in user recognition and usability. Because there has been no user testing done
specifically for the interface, it is impossible to make any conclusions regarding its effectiveness.

7. Performance Because the prototype is implemented using cloud technology, it can easily be scaled
up to allow many concurrent users to utilize the service simultaneously. However, because the tool
forms a bridge between two components, the data needs to bridge longer distances causing higher
latency during the publication process. Therefore, the publication time (which could be used as a
metric of performance for this tool) is longer than existing systems, for example, Zenodo, which has
its own, internal repository readily available with very low latencies. However, several performance
metrics can still be measured, which is shown in Section 5.2.

5.2 Performance Measuring

As stated in Section 3.1, performance for a tool such as this is not trivial to define and can include
both technological and user interaction aspects. Because no proper user testing has been done for this
prototype, only technological metrics have been measured. A series of load tests have been performed
to measure how the application scales when multitudes of concurrent users are requesting to publish
repositories. These tests have been completed using the Azure DevOps [43] platform, which offers a load
testing feature that allows you to simulate a number of virtual users that send a specified web request
to a service over a certain time span.

Many components of the prototype interface with other applications and services over the Internet.
In order to perform load testing on the prototype, these interfaces had to be closed off, to avoid simulta-
neously load testing the external services. Therefore, the downloading of repositories, uploading to the
publishing system and communication with the internal database have been disabled and replaced with
dummy interfaces that always return a default result. However, all programming logic remains and is
tested. Not only does this approach reduce the load on the external services, but it also increases the
reliability of the load tests because there is no longer any external dependencies present which could
influence the results.

To determine the number of users to be load tested, data from Zenodo has been obtained and analyzed
to see how many users are publishing repositories through GitHub to Zenodo using its integrated feature.
Unfortunately, this data could not be obtained using the Zenodo developer API, as it only allows users to
access information about datasets that they have published themselves (a personal Access Key is required
for each API call). Therefore, the data has been obtained using the Zenodo search feature along with
web scraping techniques. By searching Zenodo for all publications with the ”Software” Type metadata
property, a list of the past 1850 publications has been obtained. This list was filtered to contain only
publications that have been published through GitHub and then sorted by date (shown in Table 5.1).
From these results, it is clear that this service is being used by only a small number of users. The load
tests have therefore been performed with 50 concurrent users (roughly the maximum amount possible
for any single day according to the data from Zenodo), 100, 500 and 1000 users (multiples of the lower
bound up to a factor of 20). Table 5.2 shows the complete list of Azure DevOps Load Test settings and
values that were used during these load tests.

To determine technological performance of the system, two metrics have been measured: average
response time and requests per second. Average response time is measured by taking the time between
when the request is sent by the (simulated) user browser and when the entirety of the response has been
received. To obtain an average, the mathematical mean of the response time of each request is calculated.
Requests per second is measured by the (average) amount of requests made to the service every second
of the load test. The average response time metric is a good indicator of processing speed, whether
the service can receive, process and respond to requests in a timely manner. Poor performance in these
areas would mean that the average response time rises rapidly with many concurrent users, slowing down
response times and degrading user experience and usability of the system overall. Requests per second
is an indicator of the efficiency of the system in sending and receiving requests, i.e. whether or not
unnecessary requests are being made.

Figures 5.1, 5.2 and 5.3 show the average response time as well as requests per second that are
being processed simultaneously when publishing a single repository, a composite of 2 repositories and a

30

CHAPTER 5. RESULTS

Figure 5.1: Average response time and requests per second for publishing a single reposi-
tory

50 100 500 1000

0

2

4

6

8

0.7

1.4

7.4

8.8

User count

A
v
g
.
re
sp
o
n
se

ti
m
e

50 100 500 1000

30

35

40

45

50

55

60

29.8

40.6

59.4 59.1

User count
R
eq
u
es
ts

p
er

se
co
n
d

composite of 5 repositories, respectively, to the system. These results show that when publishing a single
or a composite of 2 repositories, the response time scales linearly with the number of users between 100
and 500 (with about a factor 5 increase, which is expected, as the number of users also increases by that
factor). However, between 500 and 1000 users, the scaling is much better, with only around a factor
of about 1.25 (while a factor of 2 is expected). When publishing a composite of 5 repositories though,
the average response time scales completely linearly, increasing with a factor very close to the one that
increases the number of virtual users.

The statistics for the requests per second metric are much more variable and do not seem to follow a
general pattern at all. One would assume that when the number of concurrent users goes up, the average
response time increases and therefore the number of requests that can be handled simultaneously per
second goes down. However, this only seems to be the case in the tests for publishing a composite of 5
repositories. In the other tests, the number of requests per second generally increases as the user load
does. Although this is unexpected, a larger number of requests per second means more requests are
being processed simultaneously, which indicates a higher degree of scalability and performance.

To assess the performance of the system using these statistics, the user activity data from Zenodo
needs to be taken into account, as well as the general use case of the system. Zenodo only has a possible
maximum concurrent user load of 50. The system, at 50 users, performs well (scaling with a factor that
is less than linear to the number of repositories published). Furthermore, when examining the general
use case of the system, users are unlikely to perform publications more often than the peak response
time visible in the statistics. When writing source code through a VCS, commits can happen in large
numbers and frequently. However, publications of source code generally only happen when a certain
unit of work has been completed or milestone has reached. These things occur much less frequently and
therefore there is less pressure on a system that provides a service for this task to perform it extremely
quickly. Of course, should such a system be more properly implemented, for example in the ENVRI-hub
environment (see Section 2.1.4), the number of concurrent users is likely to rise significantly. However,
due to the nature of the use case, the current response times shown are still adequate should the user
load increase by a factor of 20 of the currently expected users.

Additional performance data, which shows the increase and decrease of performance over the duration
of the load tests, can be found in Appendix B. Although some spikes are seen both upwards and down-
wards, generally the plots are straight within an acceptable vertical range. This is the most desirable
shape, as any spikes indicate a large difference in either average response time or requests handled per
second, which implies a poor ability to handle a high user load over a long time period. Figures B.5 and
B.6 however, do show consistently increasing numbers for both average response time and requests per
second when publishing a composite of 5 repositories. This could indicate that the system does start to
collapse under a consistently higher load, although, as shown by the averages that have been discussed
in the previous paragraph, still within an acceptable margin.

31

CHAPTER 5. RESULTS

Table 5.1: GitHub repositories published to Zenodo between September 5th, 2019 and
October 17th, 2019

Date Repositories published

2019-09-05 1

2019-09-06 14

2019-09-07 11

2019-09-08 22

2019-09-09 51

2019-09-10 48

2019-09-11 44

2019-09-12 45

2019-09-13 39

2019-09-14 16

2019-09-15 8

2019-09-16 39

2019-09-17 55

2019-09-18 52

2019-09-19 45

2019-09-20 48

2019-09-21 12

2019-09-22 25

2019-09-23 43

2019-09-24 43

2019-09-25 38

2019-09-26 48

2019-09-27 57

2019-09-28 16

2019-09-29 19

2019-09-30 40

2019-10-01 62

2019-10-02 42

2019-10-03 45

2019-10-04 50

2019-10-05 9

2019-10-06 27

2019-10-07 37

2019-10-08 61

2019-10-09 56

2019-10-10 46

2019-10-11 44

2019-10-12 18

2019-10-13 23

2019-10-14 63

2019-10-15 56

2019-10-16 50

2019-10-17 27

32

CHAPTER 5. RESULTS

Table 5.2: Azure DevOps Load Test settings and values

Setting Value

Duration 2 minutes

Load pattern Constant

Browser mix 40% IE, 60% Chrome

Load agents Geo-location West-Europe (Netherlands)

Warmup duration 0 seconds

Virtual users 50, 100, 500, 1000

Figure 5.2: Average response time and requests per second for publishing a composite of
2 repositories

50 100 500 1000

0

2

4

6

8

10

12

0.9 0.9

8.8

12.3

User count

A
v
g.

re
sp
on

se
ti
m
e

50 100 500 1000

30

40

50

60

26.3

51.9

48.2

63.9

User count

R
eq
u
es
ts

p
er

se
co
n
d

Figure 5.3: Average response time and requests per second for publishing a composite of
5 repositories

50 100 500 1000

0

10

20

30

40

50

60

2.3
5.7

33.6

59.4

User count

A
v
g.

re
sp
on

se
ti
m
e

50 100 500 1000
9

10

11

12

13

14

15 14.9
14.6

12.8

9.5

User count

R
eq
u
es
ts

p
er

se
co
n
d

33

CHAPTER 5. RESULTS

5.3 Other results

The prototype described in the previous chapter is the first step towards solving the problems posed
in Section 1.2. It offers functionality for persistently publishing existing version control repositories,
assigning PIDs to them and easing the transition to such persistent publishing systems for researchers or
industry workers who are unfamiliar with these new technologies. Furthermore, it provides means to cite
specific software versions and research data subsets. Moreover, it allows these processes from multiple
different version control systems to multiple different publishing systems, with an abstract design leaving
room to be extended to any number of additional systems in the future.

While several of the problem scenarios introduced in Chapter 1 could benefit from such a service, there
are still many improvements that could be made to increase its effectiveness and interoperability with
existing version control workflows. For example, the current prototype only allows manual manipulation
for publishing data objects, and no machine manipulation. This is not as much of a problem when a
single researcher is using the repository. However, when multiple researchers are using a repository and
pushing data or code to it independently, being able to automatically create publications of snapshots
based on certain criteria, and implement this into the software developer workflow, could help in the
organization of a project.

Furthermore, the metadata standard provided by the tool is very limited due to the differences in
metadata properties between the possible publishing systems. Because metadata and machine actionabil-
ity are two of the most important aspects of the FAIR principles, these two factors pose a big limitation
on the effectiveness of the tool.

Additionally, data provenance is not accounted for when publishing with the tool. Both figshare and
Harvard Dataverse do not offer support for versioning of published digital objects, and B2SHARE only
offers rudimentary support in the form of a metadata property. While it is difficult to provide such
versioning with the tool itself, it is still paramount to the usefulness of online publishing services to
provide these functionalities.

Moreover, from trying to implement this tool, it has become clear that current publishing systems
are focused on data and not software. Even figshare, which has built-in GitHub integration, a platform
that primarily hosts software, offers little metadata properties and other types of features specifically
used for software rather than data. This makes it difficult to properly host software source code on these
platforms.

34

Chapter 6

Discussion

In this chapter, the work, and results of said work, done in this thesis are discussed. First, the degree to
which the research questions have been answered will be discussed. Next, several social challenges and
quality control concerns are considered. Then, the novelty of the work and possible innovations will be
examined, as well as additional contexts in which the work could be used.

6.1 Research Questions

Sub RQ1: What are the state-of-the-art approaches to enable data FAIRness of Version
Control Systems?
We have seen many different persistent data management systems, and all of them share similar at-
tributes. The general strategies for data management which they employ are similar, and following the
FAIR principles (albeit to differing degrees). However, there are large differences in both metadata prop-
erties as well as other data management related features that impair the FAIRness of data and software
which is published to these systems.

Two different systems which offer a service for persistent publishing of VCS repositories have been
examined, namely Zenodo and figshare. Both these systems work via GitHub integration and do not offer
any way for publishing repositories from either a different VCS or a different web host. Furthermore,
both systems can only publish to their internal repository, meaning there is no flexibility in data host or
PID type selection. Because of these two reasons, options for publishing VCS repositories are very limited.

Sub RQ2: How can digital objects in VCS repositories be persistently published with PIDs
and metadata?
Section 3.1 details several requirements which have been obtained from literature study, previous experi-
ence within the field of software engineering and existing systems which have been examined as a part of
this research. The listed requirements are only an initial suggestion of the complete list of requirements
for persistent publishing of VCS repositories, and a more extensive requirements analysis is needed to
develop such a list. Both interviewing of field experts as well as extensive user testing is needed to
completely flesh out the final requirements.

RQ: How can existing Version Control Systems be connected to persistent identifier-based
data management systems?
Chapter 3 describes an abstract architecture for connecting existing VCSs to persistent identifier-based
data management systems. It is important to note that the architecture described and implemented in
this thesis is only a proof of concept. It is meant to discover what kind of workflow is needed when
persistently publishing VCS repositories, as well as any problems that arise when trying to create these
workflows and how these problems should be managed. While the implementation of this architecture
was successful, several problems arose which, at this stage, are not yet solved. The root cause of most
problems lies in the incompatibility of the standards employed by the different publishing systems. While
these systems are attempting to adhere to the FAIR principles, and are somewhat successful in this, the
lack of actual standardized definitions, instead of mere principles or guidelines, still causes a hinder for
both humans and machines interacting with these systems. Therefore, connecting VCSs and persistent
publishing systems is practically possible, but far from theoretically optimized.

The conclusions that are made when answering this question have been made by examining purely

35

CHAPTER 6. DISCUSSION

freely available online FAIR enabled publishing systems. A number of closed-off systems, only accessible
to e.g. academic organizations or certain research institutes, might exist which, when examined, would
lead to different answers to the research questions.

6.2 Social Challenges

Besides the technical challenges laid out in this thesis, there are several social challenges to consider as
well. Many RIs and data-intensive organizations have a hesitancy to start utilizing persistent identifier
systems in their data management cycles. Reasons for this hesitancy include a profound gap in knowledge
about what persistent and unique identifiers are, what they can be used for, and what the best practices
regarding their use are, perceived high investment costs (both for personnel, hardware and software), and
a lack of support from the respective scientific communities to change engrained work practices. The use
of persistent and unique identifiers for both data and metadata objects throughout the entire data life
cycle needs to be encouraged, and RIs should become apt users of both tools for applying PIDs to their
(digital) resources and data, as well as tools that use supported identification and citation mechanisms
to facilitate research work - including data movement, method application to sets, provenance tracking,
etc [3]. Therefore, solutions meant for transitioning organizations from legacy systems to persistent
identifier systems need to be made available to (in part) provide such encouragement. A system such as
described in this thesis could offer this encouragement, as it is available to use through an online service,
without any extra organizational overhead. Furthermore, it is browser-based and does not require any
additional expertise to integrate into existing workflows, therefore having a high degree of accessibility.
Organizations that are hesitant on investing time and effort into enabling the FAIRness of their data
management practices can utilize this system with their existing VCS repositories to experience the power
of PIDs without any significant changes to data management structure or human resource investments.

Furthermore, due to the modular set up of the system and its components, as well as its nature as
a Web service, there are opportunities for inclusion in projects like the ENVRI-hub (see Section 2.1.4).
This could aid in the spread of the service to more potential users and popularizing the assignment of
PIDs to VCS repositories, also easing the transition from traditional data management systems to PID
based systems for hesitant data providers. However, to make this possible the system would have to be
heavily modified to be able to provide a high standard of authentication, authorization, and integration
with existing ENVRI services.

6.3 Quality Control

In the data management life cycle, quality control is an important aspect. Ideally, the quality of FAIRly
published data is checked and approved before the publication is made final. Of course, methods for
confirming the quality of data are highly dependent on the data and its context and can therefore
(largely) not be implemented in a general sense. However, FAIRness is not about the quality of data,
but rather the quality of metadata. The system proposed in this thesis demands a rigorous metadata
schema, that is based on the latest, generally approved standards, to be filled out whenever a repository
is published. Therefore, the tool provides at least the FAIRness aspect of quality control. Of course,
quality control is only as good as the metadata schema. Should there be new developments from the
data science community which bring forth a new consensus about the optimal metadata schema, the
system should adjust accordingly.

Many platforms hosting version control repositories, such as GitHub or Azure DevOps, provide
integrated quality control features (e.g. automated test and build pipelines when committing new content
or issue boards allowing users to request changes). However, metadata is generally not something that
is checked during these quality control processes. Therefore, should the proposed system be used in
practice, e.g. for publishing repository contents after every software version is complete, it can be used
in the quality control procedure to ascertain the correct metadata properties. However, the effectiveness
and user experience would be much higher if the system was integrated with the existing pipelines and
therefore could be managed from and automatically deployed by the platforms that are already being
used for many other tasks.

36

CHAPTER 6. DISCUSSION

6.4 Novelty and Innovation

While theoretical research has been done into exactly how digital objects should be formed to provide
the greatest benefits to data consumers, practical research and solutions are still in their infancy. Such
practical solutions for integrating Version Control Systems with persistent publishing systems do exist,
but this thesis discusses a novel approach to this problem: providing a single solution for multiple VCSs
and multiple publishing systems, while existing solutions only allow for a single VCS (which must be
hosted on a specific platform) and a single publishing system.

While conducting the research, it has become clear that options for persistent software publishing are
limited, both in service providers as well as provided functionalities and a lot of room is left to further
explore these aspects of this problem space. Furthermore, it has been shown that, even though the
FAIR principles are being adhered to by persistent publishing systems, they are still not very suitable
for publishing software. This implies that the FAIR principles might not completely apply to software,
or are not being implemented properly to deal with both software and data.

6.5 Additional Contexts

Some research is being done into creating practical applications dealing with DOs and PIDs. SeaDataNet
[44], a distributed marine data infrastructure network for managing the large and diverse data sets col-
lected by the oceanographic fleets and the automatic observation systems, maintains a project known as
SeaDataCloud, which is a large database with millions of data records accessible by researchers. Because
of the large data volumes that are being processed and transferred by this system, SeaDataNet is work-
ing with researchers to prevent network congestion when many concurrent users are active. One of the
approaches to this problem is by utilizing a networking technique called NDN (see Section 2.1.5), which
routes data objects based on (unique) names instead of a location. To integrate these two technologies,
NDN must be able to interoperate with PIDs [20] [45]. When designing systems to integrate multiple
technologies, all use cases from each technology must be accounted for. This thesis provides requirements
and considerations for one such use case.

Expanding on this, techniques are being developed to optimize the fetching and sharing of PID
identified objects over NDN [46]. Since PIDs are often used to fetch different data objects from multiple
locations when reproducing a workflow published by community, an approach for integrating PIDs with
NDN networks could be used to optimize the caching and distribution speeds of those data objects. Data
repositories such as those discussed in this thesis can grow large in size, because all different versions
of many, possibly large in size data objects are stored. Therefore, ensuring their efficient distribution is
critical for user experience when utilizing services which store digital objects using PIDs.

Additionally, many RIs offer services not only for accessing and publishing data objects, but also
for processing data based on user demands, e.g., via scientific workflows or third party virtual research
environments. This data is almost universally stored using PIDs, providing a unique and persistent way
to identify and cite stored DOs. However, efficiently retrieving and sharing digital objects in a shared
data processing environment requires knowledge of application access patterns as well as the underlying
network level distribution. Optimizing data discovery and access among distributed partners on shared
infrastructure emerges as an important challenge for infrastructure operators to maintain quality of
service and user experience [47]. Novel approaches utilizing ICN techniques to retrieve content based
on PIDs are being developed to optimize such data access on shared infrastructure [47]. As mentioned
before, optimizing efficient distribution of data repositories that can grow large in size is beneficial to
users of version control systems.

37

Chapter 7

Conclusion

To enable open science and innovation in the industry, data sharing is critical. Current data management
practices and solutions are not sustainable for the massive amounts of data that are being processed
and transferred today, as well as for citation, interoperability and reproducibility needs. Therefore, new
technologies and data management approaches need to be developed to deal with these problems. Several
of these already exist, such as persistent identifiers, DOIP, and FAIR principles, but there are still many
data management use cases that have not yet been covered.

This thesis has investigated one such use case, namely the integration of multiple Version Control
Systems with multiple persistent data publishing systems. The state-of-the-art approaches to this case
have been examined, and found that while solutions for this problem do exist, they are not diverse
enough, and are lacking many useful features. For example, they only allow publishing repositories from
a single kind of VCS, offer only a single type of PID and have no publishing database flexibility. Addi-
tionally, these solutions do not differentiate between general purpose data and software data. Therefore,
many features that could be useful to software developers utilizing these systems are absent: metadata
standards do not contain the necessary properties for software and APIs do not offer any specialized
operations.

To expand this limited functionality, this thesis has proposed a novel solution that bridges this gap and
creates a tighter integration between VCSs and publishing systems, by allowing publication of software
repositories from multiple different VCSs to multiple different publishing systems. The requirements,
implementation and workflow for this system detail how VCSs can be connected to persistent identifier-
based data management systems and what must be kept in mind in future iterations of work on this topic.
Although making this connection is practically possible, it is difficult and incomplete due to differing
standards and practices between existing persistent data publishing services.

This thesis is only a preliminary study, and more research is needed for the persistent publishing of
both version-controlled as well as non-version controlled software. Existing solutions for this problem do
not yet include all features required by academic software developers, some of which have been laid out
in this work. Software is a composite, live digital object and therefore has too many aspects that are
subject to change to be directly submitted to persistent publishing systems that are targeted towards
traditional data. More specific methods and tools need to be developed to facilitate the publishing of
software and all of its specifics, such as dependencies and versioning.

Furthermore, the fact that all publishing systems which have been examined in this work follow the
FAIR principles, yet are not suitable enough to be used to publish software suggests that the FAIR
principles do not fully apply to software, or are only a part of the complete specification which is needed
for software to be published. More work is needed which examines the FAIR principles in the context of
software.

To improve the data management ecosystems that are used by scientists and industry, both theoretical
standards, as well as practical applications in this field, need to be advanced. Not only to improve worker
productivity and user experience but also to bring these issues to the attention of the public and increase
the adoption rates among the scientific community.

38

Chapter 8

Future Work

Further VCS integration The prototype described in this thesis has focused on publishing VCS
repositories to persistent publishing systems by manually selecting the required snapshots and manually
entering the desired metadata. However, in many research and industry projects, large teams work
together on single repositories. Therefore, manually publishing could cause problems because of a lack
of communication between developers, resulting in a confusion of the publishing process. Integrated
solutions into the VCS workflow and platforms offering VCS services which can automatically publish
snapshots based on certain criteria could offer solutions here and should be considered for future research.
Of course, there are many more complex scenarios that could be conceived regarding VCS workflow
scenarios.

Software metadata and FAIR principles As discussed before, current metadata standards and by
extension, the FAIR principles are possibly not completely suited for software. More research is needed
to confirm this and create updated standards that can be used to persistently publish software.

Improved publishing systems As mentioned in the thesis, current publishing systems do not provide
all required and/or desired functionality (e.g. composite publishing). Therefore, more research into
possible requirements and implementing these requirements into existing and new publishing systems is
needed.

39

Bibliography

[1] C. Fahrenfort and Z. Zhao, “Effective digital object access and sharing over a networked environ-
ment using DOIP and NDN”, Sep. 2019. doi: 10.1109/eScience.2019.00092. [Online]. Available:
https://doi.org/10.1109/eScience.2019.00092.

[2] Grasple webpage, https://grasple.com/, Accessed: 2019-04-18.

[3] M. Hellström, M. Lassi, A. Vermeulen, R. Huber, M. Stocker, F. Toussaint, M. Atkinson, M. Fiebig,
and Z. Zhao, “A system design for data identifier and citation services for environmental ris projects
to prepare an envriplus strategy to negotiate with external organisations”, ENVRIPLUS, Tech.
Rep. D6.1, Jan. 2017. [Online]. Available: http://www.envriplus.eu/wp-content/uploads/
2015/08/D6.1-A-system-design-for-data-identifier-and-citation-services-for-

environmental-RIs.pdf.

[4] P. Wittenburg, “From persistent identifiers to digital objects to make data science more efficient”,
Data Intelligence, vol. 1, no. 1, pp. 6–21, 2019.

[5] FAIR principles webpage, https://www.go-fair.org/fair-principles/, Accessed: 2019-04-25.

[6] M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg, G. Appleton, M. Axton, A. Baak, N. Blomberg,
J.-W. Boiten, L. B. da Silva Santos, P. E. Bourne, et al., “The fair guiding principles for scientific
data management and stewardship”, Scientific data, vol. 3, 2016.

[7] FORCE11, “Guiding principles for findable, accessible, interoperable and re-usable data publishing
version b1.0”, Tech. Rep.

[8] JSON for Linked Data webpage, https://json-ld.org/, Accessed: 2019-10-08.

[9] GitHub webpage, https://github.com/, Accessed: 2019-08-05.

[10] F. McCown, S. Chan, M. L. Nelson, and J. Bollen, “The availability and persistence of web refer-
ences in d-lib magazine”, arXiv preprint cs/0511077, 2005.

[11] A. Karakannas and Z. Zhao, “Information centric networking for delivering big data with persistent
identifiers”, University of Amsterdam, 2014.

[12] J. Hakala et al., “Persistent identifiers: An overview”, KIM Technology Watch Report, 2010.

[13] R. Kahn and R. Wilensky, “A framework for distributed digital object services”, International
Journal on Digital Libraries, vol. 6, no. 2, pp. 115–123, 2006.

[14] P. Wittenburg and G. Strawn, “Common patterns in revolutionary infrastructures and data”, Draft
manuscript, 2018.

[15] DONA Foundation webpage, https://www.dona.net/, Accessed: 2019-10-09.

[16] DONA foundation, “Digital object interface protocol specification”, Tech. Rep., 2018.

[17] B. MARIS, “Envri-fair-interoperable environmental fair data and services for society, innovation
and research”,

[18] ESFRI webpage, https://www.esfri.eu/forum, Accessed: 2019-10-21.

[19] L. Zhang, D. Estrin, J. Burke, V. Jacobson, J. D. Thornton, D. K. Smetters, B. Zhang, G. Tsudik,
D. Massey, C. Papadopoulos, et al., “Named data networking (ndn) project”, Relatório Técnico
NDN-0001, Xerox Palo Alto Research Center-PARC, vol. 157, p. 158, 2010.

[20] S. Koulouzis, R. Mousa, A. Karakannas, C. de Laat, and Z. Zhao, “Information centric networking
for sharing and accessing digital objects with persistent identifiers on data infrastructures”, in 2018
18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID),
IEEE, 2018, pp. 661–668.

40

https://doi.org/10.1109/eScience.2019.00092
https://doi.org/10.1109/eScience.2019.00092
https://grasple.com/
http://www.envriplus.eu/wp-content/uploads/2015/08/D6.1-A-system-design-for-data-identifier-and-citation-services-for-environmental-RIs.pdf
http://www.envriplus.eu/wp-content/uploads/2015/08/D6.1-A-system-design-for-data-identifier-and-citation-services-for-environmental-RIs.pdf
http://www.envriplus.eu/wp-content/uploads/2015/08/D6.1-A-system-design-for-data-identifier-and-citation-services-for-environmental-RIs.pdf
https://www.go-fair.org/fair-principles/
https://json-ld.org/
https://github.com/
https://www.dona.net/
https://www.esfri.eu/forum

BIBLIOGRAPHY

[21] A. Karakannas, “Information Centric Networking for Delivering Big Data with Persistent Identi-
fiers”, PhD thesis, University of Amsterdam, Jul. 2014. doi: 10.5281/zenodo.889603. [Online].
Available: https://doi.org/10.5281/zenodo.889603.

[22] Git webpage, https://git-scm.com/, Accessed: 2019-04-18.

[23] Mercurial webpage, https://www.mercurial-scm.org/, Accessed: 2019-08-27.

[24] Subversion webpage, https://subversion.apache.org/, Accessed: 2019-08-05.

[25] Concurrent Versions System webpage, https://www.nongnu.org/cvs/, Accessed: 2019-08-05.

[26] EUDAT webpage, https://eudat.eu, Accessed: 2019-08-23.

[27] Dataverse webpage, https://dataverse.org/, Accessed: 2019-08-26.

[28] Harvard Dataverse webpage, https://dataverse.harvard.edu/, Accessed: 2019-08-26.

[29] Zenodo webpage, https://zenodo.org/, Accessed: 2019-08-19.

[30] figshare webpage, https://figshare.com/, Accessed: 2019-08-21.

[31] P. Wittenburg, M. Hellström, C.-M. Zwölf, H. Abroshan, A. Asmi, G. D. Bernardo, D. Couvreur,
T. Gaizer, P. Holub, R. Hooft, I. Häggström, M. Kohler, D. Koureas, W. Kuchinke, L. Milanesi,
J. Padfield, A. Rosato, C. Staiger, D. van Uytvanck, and T. Weigel, “Persistent identifiers: Con-
solidated assertions”, Tech. Rep., 2017. doi: 10.15497/RDA00027. [Online]. Available: https:
//doi.org/10.15497/RDA00027.

[32] T. Weigel, T. DiLauro, and T. Zastrow, “Pid information types wg final deliverable”, Tech. Rep.,
Oct. 2015. doi: 10.15497/FDAA09D5-5ED0-403D-B97A-2675E1EBE786. [Online]. Available: https:
//doi.org/10.15497/FDAA09D5-5ED0-403D-B97A-2675E1EBE786.

[33] A. Rauber, A. Asmi, D. van Uytvanck, and S. Proell, “Data Citation of Evolving Data: Rec-
ommendations of the Working Group on Data Citation (WGDC)”, Tech. Rep., Oct. 2015. doi:
10.15497/RDA00016. [Online]. Available: https://doi.org/10.15497/RDA00016.

[34] DVC webpage, https://dvc.org/, Accessed: 2019-08-28.

[35] Pachyderm webpage, https://www.pachyderm.io/index.html, Accessed: 2019-08-28.

[36] ASP .NET Core documentation webpage, https://docs.microsoft.com/en-us/aspnet/core/
?view=aspnetcore-2.2, Accessed: 2019-09-02.

[37] Angular webpage, https://angular.io/, Accessed: 2019-09-03.

[38] Azure webpage, https://azure.microsoft.com/en-us/, Accessed: 2019-09-03.

[39] Stack Overflow Developer Survey 2018, https://insights.stackoverflow.com/survey/2018,
Accessed: 2019-09-03.

[40] S. Chacon and B. Straub, Pro git. Apress, 2014.

[41] E. Quimbert, K. G. Jeffery, C. Martens, D. Boulanger, T. Carval, M. Hellström, H. Lankreijer, J.
Peterseil, C. Pichot, and Z. Zhao, “Interoperable cataloguing and metadata harmonisation for en-
vironmental ris: Prototype”, ENVRIPLUS, Tech. Rep. D8.4, Nov. 2018. [Online]. Available: http:
//www.envriplus.eu/wp-content/uploads/2015/08/D8.4-Interoperable-cataloguing-

and-metadata-harmonisation-for-environmental-RIs-prototype-.pdf.

[42] DataCite Metadata Working Group, “Datacite metadata schema documentation for the publication
and citation of research data version 4.3”, DataCite e.V., Tech. Rep., 2019.

[43] Azure DevOps webpage, https://azure.microsoft.com/en-us/services/devops/, Accessed:
2019-10-18.

[44] Seadatanet webpage, https://www.seadatanet.org/, Accessed: 2019-09-24.

[45] K. de Jong and A. Younis, “Planning and scaling a named data network with persistent identifier
interoperability”, Master’s thesis, University of Amsterdam, 2019.

[46] R. Mousa, “Application aware digital objects access and distribution using Named Data Networking
(NDN)”, PhD thesis, University of Amsterdam, Jul. 2017. doi: 10.5281/zenodo.889740. [Online].
Available: https://doi.org/10.5281/zenodo.889740.

[47] S. Koulouzis, R. Mousa, A. Karakannas, C. de Laat, and Z. Zhao, “Information centric networking
for sharing and accessing digital objects with persistent identifiers on data infrastructures”, in 2018
18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID),
May 2018, pp. 661–668. doi: 10.1109/CCGRID.2018.00098.

41

https://doi.org/10.5281/zenodo.889603
https://doi.org/10.5281/zenodo.889603
https://git-scm.com/
https://www.mercurial-scm.org/
https://subversion.apache.org/
https://www.nongnu.org/cvs/
https://eudat.eu
https://dataverse.org/
https://dataverse.harvard.edu/
https://zenodo.org/
https://figshare.com/
https://doi.org/10.15497/RDA00027
https://doi.org/10.15497/RDA00027
https://doi.org/10.15497/RDA00027
https://doi.org/10.15497/FDAA09D5-5ED0-403D-B97A-2675E1EBE786
https://doi.org/10.15497/FDAA09D5-5ED0-403D-B97A-2675E1EBE786
https://doi.org/10.15497/FDAA09D5-5ED0-403D-B97A-2675E1EBE786
https://doi.org/10.15497/RDA00016
https://doi.org/10.15497/RDA00016
https://dvc.org/
https://www.pachyderm.io/index.html
https://docs.microsoft.com/en-us/aspnet/core/?view=aspnetcore-2.2
https://docs.microsoft.com/en-us/aspnet/core/?view=aspnetcore-2.2
https://angular.io/
https://azure.microsoft.com/en-us/
https://insights.stackoverflow.com/survey/2018
http://www.envriplus.eu/wp-content/uploads/2015/08/D8.4-Interoperable-cataloguing-and-metadata-harmonisation-for-environmental-RIs-prototype-.pdf
http://www.envriplus.eu/wp-content/uploads/2015/08/D8.4-Interoperable-cataloguing-and-metadata-harmonisation-for-environmental-RIs-prototype-.pdf
http://www.envriplus.eu/wp-content/uploads/2015/08/D8.4-Interoperable-cataloguing-and-metadata-harmonisation-for-environmental-RIs-prototype-.pdf
https://azure.microsoft.com/en-us/services/devops/
https://www.seadatanet.org/
https://doi.org/10.5281/zenodo.889740
https://doi.org/10.5281/zenodo.889740
https://doi.org/10.1109/CCGRID.2018.00098

BIBLIOGRAPHY

42

Appendix A

List of Acronyms

FAIR Findability, Accessibility, Interoperability, Re-usability

RI Research Institute

URI Uniform Resource Identifier

URL Uniform Resource Locator

PID Persistent Identifier

RDA Research Data Alliance

VCS Version Control System

HS The Handle System

DOI Digital Object Identifier

URN Uniform Resource Name

PURL Persistent URL

ARK Archival Resource Key

ePIC European Persistent Identifier Consortium

DO Digital Object

DOIP Digital Object Interface Protocol

IRP Identifier/Resolution Protocol

DOA Digital Object Architecture

EU H2020 European Union’s Horizon 2020 program

ENVRI European Environmental Research Infrastructures

EOSC European Open Science Cloud

ESFRI European Strategy Forum on Research Infrastructures

SVN Subversion

CVS Concurrent Versions System

API Application Programming Interface

JSON JavaScript Object Notation

NDN Named Data Networking

ICN Information Centric Networking

43

Appendix B

Additional performance data

This appendix shows additional, more complete performance data to that which has been discussed in
Chapter 5. The figures in this appendix show how the average response times and requests per second
changed over the 2 minute duration of each load test.

Figure B.1: Average response time for publishing a single repository over 2 minutes

0

5

10

00:00:15 00:00:30 00:00:45 00:01:00 00:01:15 00:01:30 00:01:45 00:02:00

Time

A
v
g.

re
sp
on

se
ti
m
e
(s
) 50 users

100 users
500 users
1000 users

Figure B.2: Requests per second for publishing a single repository over 2 minutes

0

20

40

60

80

00:00:30 00:00:45 00:01:00 00:01:15 00:01:30 00:01:45 00:02:00

Time

R
eq
u
es
ts

p
er

se
co
n
d

50 users
100 users
500 users
1000 users

44

APPENDIX B. ADDITIONAL PERFORMANCE DATA

Figure B.3: Average response time for publishing a composite of 2 repositories over 2
minutes

0

5

10

15

00:00:15 00:00:30 00:00:45 00:01:00 00:01:15 00:01:30 00:01:45 00:02:00

Time

A
v
g.

re
sp
o
n
se

ti
m
e
(s
) 50 users

100 users
500 users
1000 users

Figure B.4: Requests per second for publishing a composite of 2 repositories over 2 minutes

0

50

100

150

00:00:15 00:00:30 00:00:45 00:01:00 00:01:15 00:01:30 00:01:45 00:02:00

Time

R
eq
u
es
ts

p
er

se
co
n
d

50 users
100 users
500 users
1000 users

Figure B.5: Average response time for publishing a composite of 5 repositories over 2
minutes

0

20

40

60

80

00:00:15 00:00:30 00:00:45 00:01:00 00:01:15 00:01:30 00:01:45 00:02:00

Time

A
v
g.

re
sp
on

se
ti
m
e
(s
) 50 users

100 users
500 users
1000 users

45

APPENDIX B. ADDITIONAL PERFORMANCE DATA

Figure B.6: Requests per second for publishing a composite of 5 repositories over 2 minutes

0

10

20

00:00:15 00:00:30 00:00:45 00:01:00 00:01:15 00:01:30 00:01:45 00:02:00

Time

R
eq
u
es
ts

p
er

se
co
n
d

50 users
100 users
500 users
1000 users

46

	Introduction
	Data FAIRness
	Problem Statement
	Research Questions

	Outline

	Background
	Technical Background
	Persistent Identifiers
	Digital Objects
	Digital Object Architecture
	ENVRI-FAIR
	Named Data Networking
	Version Control Systems
	Data Storage Systems

	Related Work
	Versioning of PID-enabled DOs
	Compositing multiple PID-enabled DOs

	Gap Analysis

	Architecture
	Requirements
	Architecture
	Components
	Constraints

	Prototype
	Technology Considerations
	Platforms

	Implementation
	Version Control Systems
	Publishing Systems
	Metadata Mapping
	Duplicate Publications
	Composite Publication
	Transactional Nature

	Results
	Requirements Results
	Performance Measuring
	Other results

	Discussion
	Research Questions
	Social Challenges
	Quality Control
	Novelty and Innovation
	Additional Contexts

	Conclusion
	Future Work
	Bibliography
	Appendix List of Acronyms
	Appendix Additional performance data

