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ABSTRACT 

This paper proposes an optimization of the characteristic parameters that define four architectures of adaptive notch filters, used 

to mitigate the effect of swept-frequency (chirp) jamming signals at the input of a GNSS receiver. The optimization is based on a 

performance metric computed at the acquisition stage of the receiver that represents a measure of the ratio between the peak of the 

cross-ambiguity function computed in acquisition and the noise floor. The optimization is intended to find the parameters of the 

adaptive notch filter architectures that minimize the loss in terms of this metric with respect to the interference-free case. The paper 

discusses the optimization of the parameters for the four considered architectures. The optimization process is performed under 

different working conditions, so as to highlight the sensitivity of the parameters to the changes of the operational scenarios. This 

paper presents the results of an analysis which is meant to evolve in a more complete picture of the optimal performance achievable 

by an adaptive notch filter in the presence of chirp jamming signals. 

 

I. INTRODUCTION 

The disruptive effect of Radio-Frequency Interference (RFI) on Global Navigation Satellite System (GNSS) receiver, and 

consequently on all GNSS-dependent applications, is well known and increasingly alarming [1]. Among the intentional sources of 

interference, today the jamming is one of the most feared GNSS impairments, able to disrupt GNSS-based services in wide 

geographical areas [2]. Jamming signals occurrence has been observed and reported in many recent newspaper and magazine articles 

[3]–[5], demanding for an increasing need of countermeasures [6]. 

Many techniques have been proposed so far in literature to detect, characterize, localize and mitigate jamming signals. The 

interested reader can refer to [7][8] for a comprehensive survey of the main state-of-the-art solutions. Among all of these, the well-
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known Adaptive Notch Filter (ANF) is still far from being an outdated technique, despite widely explored in literature with many 

variations [9]–[11]. ANFs are effective for Continuous Wave Interference (CWI) [11][12], efficient for Narrow Band Interference 

(NBI) [13], and, more recently, its suitability in mitigating the effects of GNSS jammers has been also investigated and demonstrated 

[14][15]. Recently, a family of ANFs, where the adaptation block is modelled as a Frequency Lock Loop (FLL), has been analyzed 

in detail in [9] (FLL-equivalent ANFs) for an instructive study of performance of the adaptation capability. ANFs are appealing for 

low complexity, low computational cost and reduced activation time if compared with other more effective but also more complex 

solutions such as transform domain excision techniques [10]. Beyond the implementation aspects, the FLL equivalence mentioned 

above makes them particularly interesting since the adaptive capability of tracking time-varying interfering frequencies can be 

analyzed using the FLL theory, already widely employed in GNSS tracking loop analysis. 

In our recent paper [15], we considered two FLL models proposed in [9] to implement the adaptive capability of the ANF: the 

standard FLL and the FLL with exponential filtering. While the former is equivalent to minimize the energy at the output of the 

Moving Average (MA) part of the notch filter, the latter corresponds to the minimization of the energy of the notch filter output. In 

particular, in [15] both have been evaluated in case of interference from fast swept-frequency jammers: while the standard FLL 

shows to be able to successfully track and mitigate jamming signals, the exponential filtering FLL proves it is not up to, suffering 

particularly from frequency discontinuities, which commonly characterize such kind of interferers. 

With this work we aim at complementing and enriching the findings presented in [15], first providing an analysis of the distortion 

induced by the notch filter on the GNSS ranging code, second, pursuing an optimization of the ANF parameters aimed at minimizing 

such distortions, still preserving the interference mitigation capabilities of the filter. A preliminary work in this direction was 

conducted in [12], with the evaluation of correlation distortions in the GNSS signal tracking stage produced by a model of 

exponential-FLL ANF. In the current work, the principal key performance indicator of the ranging code distortion is the 𝛼𝑚𝑒𝑎𝑛 

measured at the GNSS signal acquisition stage. In fact, it is well known that the jammers aim at blinding the GNSS receivers and 

blocking the acquisition stage. It is then important that any mitigation techniques not only remove the spurious power of the 

interference, but also improve as much as possible the detection probability of the GNSS signals by the receiver. 

In acquisition, the incoming signal is correlated with a series of locally generated replicas until the acquisition detector crosses a 

predefined threshold, i.e. a correlation peak has been found in the search space. Based on this, the impact of interference on the 

acquisition stage can be evaluated by exploiting a figure of merit, namely 𝛼𝑚𝑒𝑎𝑛, which is defined in [1] as the correlation peak-to-

noise-floor ratio. As the interfering power increases, the value of 𝛼𝑚𝑒𝑎𝑛  decreases thus leading to an increasing probability of a false 

alarm [1]. When the ANF is adopted to mitigate the interference, e.g. jamming signals, the 𝛼𝑚𝑒𝑎𝑛values can also be used to evaluate 

its filtering efficiency with different parameter settings at the acquisition stage. The parameter settings of ANF should be carefully 

tuned in order to enable the filter to successfully track and mitigate the jamming signals. 

In the ANF, either in its regular [11] or FLL-equivalent representations [9][15], the pole contraction factor and algorithm step, 

respectively determining the width of the notch and the tracking capability of the filter, are the parameters that shape the interference 

mitigation capability of the ANF and should be carefully adjusted. The choice of a large value of the pole contraction factor (close 

to 1) ensures a narrow notch thus to keep the most useful GNSS signals after interference mitigation, but the side effect of this choice 

is the difficulty it induces to the adaptive criterion to track the frequency changes. On the other hand, the smaller the algorithm step 

is, the slowest the filter response to the interfering signal. Thus, a good trade-off between these parameters has to be addressed in 

order to allow such kind of filters not only to successfully mitigate the interference but also to preserve the useful GNSS signals as 

much as possible. Since the chirp signals generated by different jammers present various sweeping periods and bandwidths [16][17], 

it is always a tricky problem to customize proper parameter settings of the ANF to mitigate the specified chirp signals. 

In this paper, the performance of the two main architectures (i.e. regular ANF [11] and FLL-equivalent ANFs [9][15]) and other 

new derived from the previous ones, have been evaluated and compared in case of swept-frequency jamming signal. The paper is 

organized as follows. In the next section, the methodology for distortion analysis based on 𝛼𝑚𝑒𝑎𝑛  is outlined and applied to the 

regular ANF architecture [11] as exemplary case, while its application to other ANF architectures, including the FLL-equivalent ones 

[9][15], is reported in Section III. The analysis is then completed in Section IV, showing the performance evaluation for different 

Jammer-to-Noise (𝐽/𝑁) and Jammer-to-Signal (𝐽/𝑆) ratios, focusing on the FLL models only. Finally, conclusions and practical 

considerations for a real implementation of the ANF are drawn in Section V. 
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II. METHODOLOGY FOR DISTORSION ANALYSIS 

In order to investigate the optimization of the parameters with respect to the distortion and residual interference affecting the 

GNSS signal after filtering operation, the analysis is conducted for a special case of intentional interference: the swept-frequency 

jamming signal, characterized by a linear variation in frequency along time. In this section the theoretical model of the ANF is 

summarized and an optimization technique is proposed on the basis of 𝛼𝑚𝑒𝑎𝑛  values to configure the parameter settings of the ANF. 

A. Theoretical Model of Adaptive Notch Filter 

The approach of adaptive notch filtering based on Infinite Impulse Response (IIR) architecture has been extensively exploited to 

counteract GNSS interference with its benefit of low computational effort and satisfactory performance. As already proved in 

[18][19], in a baseband digital receiver working on the complex envelope representation of signals, an IIR one-pole notch filter can 

be adopted to mitigate a CWI, i.e. one spectral line at a certain frequency. According to [18][19] the z-domain transfer function of a 

notch filter is given by 

where 𝑧0 is the zero placed in correspondence of the interference frequency to be canceled, and 𝑘𝛼 is the pole contraction factor 

determining the width of the notch, with 0 ≤ 𝑘𝛼 < 1. The conversion between 𝑧0 and the frequency of the filter notch 𝑓0 is given by 

𝑧0 = 𝑒𝑥𝑝(𝑗2𝜋𝑓0𝑇𝑠) (2) 

where 𝑓0 is expressed in units of cycle/second (Hz) and 𝑇𝑠 is the sampling time of the input signal to the notch filter. Extended 

versions of the one-pole notch filter are the two-pole and multi-pole notch filters that allow to process a real input signal respectively 

with two or multiple spectra lines in the frequency domain [11]. 

The one-pole notch filter, described above, is particularly effective for the mitigation of CWI, assuming that only one interference 

with known frequency is present. The problem of detecting and tracking an interference, whose frequency is unknown and varies 

along the time, has been further addressed in [11][20] by introducing an adaptation algorithm to estimate the 𝑧0 at run-time, according 

to the following Least-Mean-Square (LMS) iterative rule [11][20] 

𝑧0[𝑛] = 𝑧0[𝑛 − 1] − 𝜇[𝑛]𝑔(𝐽[𝑛]) (3) 

where all variables become function of the discrete time 𝑛. 𝑔(𝐽[𝑛]) is the stochastic gradient of the cost function 𝐽[𝑛], while 𝜇[𝑛] is 

the algorithm step. The adaptation algorithm makes use of the notch filter observables in order to make the 𝑧0 estimate to converge 

toward the frequency of the interfering signal. As the frequency of the interference changes, the adaptation block will allow 𝑧0 to 

progressively move in the complex plane and converge to the interference, thus allowing the filter to track the frequency variations 

of the interfering signal. 

In order to properly define the cost function, the transfer function (1) can be written as a cascade of Auto Aggressive (AR) and 

MA filtering blocks and the cost function is then defined as a function of the observables of the AR and MA blocks. Based on [9], 

the transfer function (1) can be equivalently rewritten as 

𝐻𝑓(𝑧) = 1 − 𝑧0𝑧−1
1 − 𝑘𝛼

1 − 𝑘𝛼𝑧0𝑧−1
 (4) 

where the transfer function of the AR part is explicitly written as 

𝐻𝑟(𝑧) =
1 − 𝑘𝛼

1 − 𝑘𝛼𝑧0𝑧−1
 (5) 

and the corresponding input-output equation is 

𝑥𝑟[𝑛] = (1 − 𝑘𝛼)𝑥[𝑛] + 𝑘𝛼𝑧0𝑥𝑟[𝑛 − 1]. (6) 

The output of the MA part is given by 

𝐻(𝑧) =
1 − 𝑧0𝑧−1

1 − 𝑘𝛼𝑧0𝑧−1
 (1) 
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𝑦𝑚[𝑛] = 𝑥[𝑛] − 𝑧0𝑥[𝑛 − 1]. (7) 

Then, the output of the ANF is obtained 

𝑥𝑓[𝑛] = 𝑥[𝑛] − 𝑧0𝑥𝑟[𝑛 − 1]. (8) 

According to [11][9], the cost function 𝐽[𝑛] can be either defined as the expectation of the energy of notch filter output 𝐽[𝑛] =
𝐸{|𝑥𝑓[𝑛]|2} or the expectation of the energy of MA part 𝐽[𝑛] = 𝐸{|𝑦𝑚[𝑛]|2}, thus determining two different architectures of ANFs. 

The stochastic gradient of the cost function 𝑔(𝐽[𝑛]) in (3) is 

𝑔(𝐽[𝑛]) = 𝛻𝑍0
(𝐽[𝑛]) (9) 

and the algorithm step 𝜇[𝑛] in (3) is given by 

where 𝐸{|𝑥𝑟[𝑛]|2} is the expectation of the energy of AR output and 𝛿 controls the convergence capability of the adaptation block. 

Finally, the ANF is activated when the presence of interference is claimed by comparing the modulus of the averaged pole |�̂�0[𝑛]| 
against an activation threshold 𝑇, with 

where 𝑎 is the forgetting factor of the moving average (11). The activation threshold 𝑇 can be fixed by choosing a Jammer-to-Noise 

ratio, that can be considered harmful for the GNSS receiver. 

Furthermore, considering the relationship in equation (2), the adaptation algorithm can also be designed on the basis of 𝑓0 [9], 

i.e., 

𝑓0[𝑛] = 𝑓0[𝑛 − 1] − �̅�[𝑛]�̅�(𝐽[𝑛]) (12) 

with 

and 

This adaptation algorithm based on 𝑓0 is introduced for the purpose of comparing the regular ANF with the FLL-equivalent ANFs 

which will be discussed in Section III. 

In Table 1, the abovementioned algorithms in the adaptation block are summarized and compared. Method 1 and method 2 

directly update 𝑧0  at each epoch, while method 3 and method 4 update 𝑓0  first and afterwards derive 𝑧0 . These two different 

adaptation algorithms lead to different behavior of 𝑧0. The former allows 𝑧0 to move inside the unit circle during the transient time, 

while the latter keeps 𝑧0 always on the unit circle due to the fact that 𝑓0 is always a real value. 

In this paper, for the sake of simplicity, only the difference on the choice of the cost function will be considered. Under this 

assumption, method 1 and method 3 merge, and so do method 2 and method 4. Furthermore, in this paper the method (1+3) with 

𝐽[𝑛] = 𝐸{|𝑥𝑓[𝑛]|2} and 𝑔(𝐽[𝑛]) = 𝛻𝑍0
(𝐽[𝑛]) is referred to as “Regular ANF 1”, while the method (2+4) with 𝐽[𝑛] = 𝐸{|𝑦𝑚[𝑛]|2} 

and �̅�(𝐽[𝑛]) = 𝛻𝑓0
(𝐽[𝑛]) is referred to as “Regular ANF 2”, as listed in Table 2. These two methods will be further adopted to 

compare with the FLL-equivalent architecture. 

𝜇[𝑛] =
𝛿

𝐸{|𝑥𝑟[𝑛]|2}
 (10) 

�̂�0[𝑛] = 𝑎𝑧0[𝑛 − 1] + (1 − 𝑎)𝑧0[𝑛] (11) 

�̅�[𝑛] =
𝛿̅

𝐸{|𝑥𝑟[𝑛]|2}
 (13) 

�̅�(𝐽[𝑛]) = 𝛻𝑓0
(𝐽[𝑛]). (14) 

236



Table 1. Comparison of algorithms for the adaptation block of the regular ANFs 

Regular ANFs Method 1 Method 2 Method 3 Method 4 

Adaptation algorithm 𝑧0[𝑛] = 𝑧0[𝑛 − 1] − 𝜇[𝑛]𝑔(𝐽[𝑛]). 
𝑓0[𝑛] = 𝑓0[𝑛 − 1] − �̅�[𝑛]�̅�(𝐽[𝑛]) 

𝑧0 = 𝑒𝑥𝑝(𝑗2𝜋𝑓0𝑇𝑠) 

Cost function 𝐽[𝑛] = 𝐸{|𝑥𝑓[𝑛]|2} 𝐽[𝑛] = 𝐸{|𝑦𝑚[𝑛]|2} 𝐽[𝑛] = 𝐸{|𝑥𝑓[𝑛]|2} 𝐽[𝑛] = 𝐸{|𝑦𝑚[𝑛]|2} 

Stochastic gradient 𝑔(𝐽[𝑛]) = 𝛻𝑍0
(𝐽[𝑛])  �̅�(𝐽[𝑛]) = 𝛻𝑓0

(𝐽[𝑛])  

Algorithm step 𝜇[𝑛] =
𝛿

𝐸{|𝑥𝑟[𝑛]|2}
 �̅�[𝑛] =

𝛿̅

𝐸{|𝑥𝑟[𝑛]|2}
 

 

Table 2. Adaptation block of Regular ANF 1 and Regular ANF 2 

Regular ANFs Regular ANF 1 Regular ANF 2 

Adaptation algorithm 𝑧0[𝑛] = 𝑧0[𝑛 − 1] − 𝜇[𝑛]𝑔(𝐽[𝑛]). 
𝑓0[𝑛] = 𝑓0[𝑛 − 1] − �̅�[𝑛]�̅�(𝐽[𝑛]) 

𝑧0 = 𝑒𝑥𝑝(𝑗2𝜋𝑓0𝑇𝑠) 

Cost function 𝐽[𝑛] = 𝐸{|𝑥𝑓[𝑛]|2} 𝐽[𝑛] = 𝐸{|𝑦𝑚[𝑛]|2} 

Stochastic gradient 𝑔(𝐽[𝑛]) = 𝛻𝑍0
(𝐽[𝑛])  �̅�(𝐽[𝑛]) = 𝛻𝑓0

(𝐽[𝑛])  

Algorithm step 𝜇[𝑛] =
𝛿

𝐸{|𝑥𝑟[𝑛]|2}
 �̅�[𝑛] =

𝛿̅

𝐸{|𝑥𝑟[𝑛]|2}
 

 

B. Parameters Optimization Technique Based on αmean 

In the acquisition stage of a GNSS receiver, the incoming signal is correlated with a succession of locally generated replicas until 

the acquisition detector crosses a predefined threshold, i.e. a correlation peak has been found in the search space. Based on this, the 

impact of interference on the acquisition stage can be evaluated by exploiting a figure of merit, namely 𝛼𝑚𝑒𝑎𝑛, which is defined in 

[1] as the correlation peak-to-noise-floor ratio, given by 

α𝑚𝑒𝑎𝑛 = 20log10 (
𝑥𝑝

𝐸𝑖

) (15) 

where 𝑥𝑝 is the correlation peak at the acquisition stage and 𝐸𝑖 is the average of 𝑖 off-peak correlation points in the acquisition search 

space. 

The value of 𝛼𝑚𝑒𝑎𝑛 decreases as the interfering power increases, thus leading to an increasing probability of a false alarm [1]. 

The 𝛼𝑚𝑒𝑎𝑛 value can also be used to evaluate the ANF filtering efficiency as a function of different parameters. After the filtering 

operation, the cross correlation between the local replica and the input signal is distorted, and such effect on the ranging code is 

related to the optimization of the parameters. Different from other optimization methods proposed in literatures such as [21] to adjust 

the depth of the notch based on the overall signal-to-noise ratio, this method directly exploits the metric at the acquisition stage of a 

generic GNSS receiver, therefore in this way it is more customized in the sense of GNSS application and is easy to be implemented. 
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C. An Example of Parameters Optimization for the ANF 

Hereafter we show the above presented methodology based on 𝛼𝑚𝑒𝑎𝑛 applied to the ANF algorithm illustrated in Subsection A. 

In particular, we simulated a scenario where a digital chirp jamming signal is generated and combined to a GPS L1 signal simulated 

by the N-FUELS Signal Generation Tool [22][23] at Intermediate Frequency (IF) and the ANF is exploited to track and mitigate the 

jamming signal. We reproduced a sampling rate of 40 MHz and 𝐼𝐹 = 0 Hz. In Figure 1 the spectrogram of the interfered signal is 

shown. The Sweeping Period (SP) of the chirp signal is 𝑆𝑃 = 33 μs which defines the time interval of one repetition of the chirp, 

while its bandwidth (frequency span) is 16 MHz. The power of the chirp signal is 𝑃𝑖𝑛𝑡 = − 103 dBW and Carrier-to-Noise ratio of 

the GPS signal is 𝐶/𝑁0 = 55 dB − Hz. The parameters of the simulated chirp signal were chosen on the basis of a real jammer 

configuration, according to [17]. 

  

Figure 1. Spectrogram of the interfered signal. 

As reference, the 𝛼𝑚𝑒𝑎𝑛 in case of interference-free signal is evaluated with 𝛼𝑚𝑒𝑎𝑛 = 46.8 dB in this configuration. Hereafter 

the parameters of method Regular ANF 1 are optimized on the basis of the measurements of the 𝛼𝑚𝑒𝑎𝑛 performance indicator, in the 

presence of the jamming signal. The 𝛼𝑚𝑒𝑎𝑛 is calculated 50 times over 1 ms each and then averaged. 

The optimization of the parameters 𝑘𝛼, δ and 𝑇 is shown in Figure 2 and Figure 3, which illustrate the influence of the different 

parameter settings on the calculation of 𝛼𝑚𝑒𝑎𝑛 . As presented in Figure 2, with the threshold 𝑇 = 0.7 and the forgetting factor 𝑎 =
0.9, the 𝛼𝑚𝑒𝑎𝑛  values have significant variations with 𝑘𝛼 when δ is between 0.05 and 0.2. The best trade-off between 𝑘𝛼 and δ is to 

set 𝑘𝛼 = 0.9 and δ = 0.1. This configuration is effective due to the fact that the simulated jammer has a slow frequency rate and wide 

bandwidth, which makes the adaptation block have less difficulty to track the frequency variation, thus to allow a narrow notch (large 

value of 𝑘𝛼 ) to mitigate the interference. In Figure 3, with δ = 0.1 and 𝑎 = 0.9, the 𝛼𝑚𝑒𝑎𝑛  values are strongly dependent on the 

choice of 𝑘𝛼 but rarely affected by 𝑇. 

Thus, the aforementioned parameters are optimized by fixing 𝑘𝛼 between 0.8 and 0.9, and δ between 0.1 and 0.15 on the basis 

of 𝛼𝑚𝑒𝑎𝑛 values. The threshold 𝑇 can also be considered in order to finalize precise parameter settings, by tuning it as the minimum 

𝐽/𝑁 considered harmful to the receiver. This is an example to demonstrate the procedure of parameters optimization for the ANF. 

Although in the scenario only three parameters are discussed, the trade-off based on the 𝛼𝑚𝑒𝑎𝑛 values can be also extended to other 

parameters of the ANF, such as the forgetting factor 𝑎 in (11). The optimum 𝛼𝑚𝑒𝑎𝑛 value is still significantly lower than that obtained 

in the interference-free case, meaning that the jamming effect cannot be totally canceled out. 
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Figure 2. 𝑘𝛼 and δ trade-off based on 𝛼𝑚𝑒𝑎𝑛 , with 𝑇 = 0.7 

and 𝑎 = 0.9. 

    

Figure 3. 𝑘𝛼 and 𝑇 trade-off based on 𝛼𝑚𝑒𝑎𝑛, with δ = 0.1 

and 𝑎 = 0.9. 

Figure 4 shows the Cross-Ambiguity Function (CAF) of the interfered signal at the acquisition stage. Due to the strong 

interference, the power of the interference is distributed on the whole search domain, leading to a failure in the acquisition with 

𝛼𝑚𝑒𝑎𝑛 = 21.6 dB. After interference mitigation with a good combination of parameters achieved through the previous analysis, the 

acquisition is achieved with 𝛼𝑚𝑒𝑎𝑛 = 37.8 dB as shown in Figure 5. 

  

Figure 4. CAF of the interfered signal without interference 

mitigation. 𝛼𝑚𝑒𝑎𝑛 = 21.6 dB. 

   

Figure 5. CAF of the mitigated signal, with 𝑘𝛼 = 0.9,        

δ = 0.1, 𝑇 = 0.7 and 𝑎 = 0.9. 𝛼𝑚𝑒𝑎𝑛 = 37.8 dB. 

III. COMPARISON OF DIFFERENT ANF ARCHITECTURES 

This section is intended to extend the concept of parameters optimization on the basis of 𝛼𝑚𝑒𝑎𝑛  as introduced in Section II to the 

case of FLL-equivalent ANFs and compare the results of the two families of ANF architectures, i.e. regular ANFs and FLL-equivalent 

ANFs. The major difference between the two architectures is the adaptation block: the algorithms for the FLL-equivalent ANFs are 

summarized in the following and the comparison between the regular ANFs and the first-order FLL-equivalent ANFs are given. 
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A. Theoretical Analysis  

In [9], the equivalence between the adaptation block for the regular ANFs and the adaptation block for FLL-equivalent ANFs are 

established, which allow the adaptation block of the regular ANFs to be realized in either standard FLL or FLL with exponential 

filtering schemes. Similar to Regular ANF 1, the FLL with exponential filtering corresponds to the minimization of the energy of the 

notch filter output, while, similar to Regular ANF 2, the standard FLL is equivalent to minimize the energy at the output of the MA 

part. A further investigation on the performance of FLL-equivalent ANFs is presented in [15] which exploits dynamic stress error 

and noise jitter as the metrics to evaluate their performance on the mitigation of frequency-swept jamming signals. The results reflect 

that the standard FLL is able to successfully track frequency changes and to quickly react to the frequency discontinuities. On the 

contrary, the exponential filtering FLL proves to suffer particularly from frequency discontinuities, which commonly characterize 

the swept-frequency interferers. 

Similar to (12), in the case of first-order FLL-equivalent ANFs, the 𝑓0 is obtained through 

𝑓0[𝑛] = 𝑓0[𝑛 − 1] − �̅��̅�(𝐽[𝑛]) (16) 

where the algorithm step �̅� is the coefficient of the first-order loop filter in FLL. In Table 3 the mathematical expressions of the two 

FLL-equivalent ANFs are compared. According to [24] and [9], the algorithms to calculate �̅� in the two FLL-equivalent ANFs are 

reported. In the standard FLL, �̅� is a function of the bandwidth (𝐵𝑛) of the loop filter in FLL, while in the exponential filtering FLL, 

�̅� is a function of both 𝐵𝑛 and 𝑘𝛼. 

Table 3. Comparison on algorithms in the adaptation block between two FLL-equivalent ANFs 

FLL-equivalent ANFs Exponential filtering FLL  Standard FLL 

Cost function 𝐽[𝑛] = 𝐸{|𝑥𝑓[𝑛]|2} 𝐽[𝑛] = 𝐸{|𝑦𝑚[𝑛]|2} 

Stochastic gradient �̅�(𝐽[𝑛]) = 𝛻𝑓0
(𝐽[𝑛])  �̅�(𝐽[𝑛]) = 𝛻𝑓0

(𝐽[𝑛])  

Algorithm step �̅�(𝐵𝑛 , 𝑘𝛼) �̅�(𝐵𝑛) 

 

In order to ease the comparison, the mathematical expressions that define the architectures of regular ANFs and FLL-equivalent 

ANFs are gathered in Table 4, as a summary of Table 2 and Table 3. Table 4 highlights that the difference between each regular 

ANF and its corresponding FLL-equivalent is the computation of the algorithm step. In the regular ANFs, 𝜇[𝑛] and �̅�[𝑛] are derived 

at each time instant 𝑛 based on the output energy of the AR output, while the configurable parameters are 𝛿 and 𝛿̅, which determine 

the tracking capability of the adaptation block. In the FLL-equivalent ANFs �̅� is the coefficient of the loop filter in FLL and it is a 

function of the loop bandwidth 𝐵𝑛 in the case of standard FLL as well as 𝐵𝑛 and 𝑘𝛼 in the case of exponential filtering FLL. The 

loop bandwidth 𝐵𝑛 is a configurable parameter which determines the tracking capability of the FLL-equivalent architecture [15]. 

Consequently, the four architectures, although pairwise equivalent, differ for the parameters that can be subject of optimization and 

therefore may differ in the optimized performance. 

B. Performance Comparison 

In FLL-equivalent ANFs, similar to the regular ANF, 𝑘𝛼 is the pole contraction factor to determine the width of the notch, while 

the loop bandwidth 𝐵𝑛 plays a similar role as the algorithm step, i.e. 𝛿 and 𝛿̅ in the regular ANFs, thus shaping the tracking capability 

of the filter. With a wider bandwidth, the FLL could better track the frequency variation, but also suffer from more noise entering 

the system. In a similar way, parameters of the FLL-equivalent ANFs can also be optimized with respect to the 𝛼𝑚𝑒𝑎𝑛  achieved after 

interference mitigation at the acquisition stage. The Regular ANF 1 and Regular ANF 2 methods are implemented and optimized for 

comparison with the FLL-equivalent structures. 
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Table 4. Comparison between the regular ANFs and the first-order FLL-equivalent ANFs in the adaptation block 

 

The simulation scenario exploits the same interfered signal as the scenario in Section II and the four methods introduced in Table 

4 are implemented to mitigate the interference. Figure 2 and Figure 6 show the optimization on the achieved 𝛼𝑚𝑒𝑎𝑛  values by Regular 

ANF 1 and exponential FLL, while Figure 7 and Figure 8 present the optimized 𝛼𝑚𝑒𝑎𝑛  values by Regular ANF 2 and standard FLL. 

With the optimized trade-off on the parameter settings of each method, the four methods could achieve comparable results. A further 

discussion on the performance of FLL-equivalent ANFs is presented in Section IV. 

  

Figure 6. Exponential filtering FLL optimization, with the optimized trade-off: 𝑘𝛼 = 0.8, 𝐵𝑛 = 10 MHz and 𝑎 = 0.9. 

ANF 

architectures 

Regular ANF First-order FLL-equivalent ANFs 

Regular ANF 1 Regular ANF 2 
Exponential filtering 

FLL  
Standard FLL 

Adaptation 

algorithm 
𝑧0[𝑛] = 𝑧0[𝑛 − 1] − 𝜇[𝑛]𝑔(𝐽[𝑛]) 

𝑓0[𝑛] = 𝑓0[𝑛 − 1] − �̅�[𝑛]�̅�(𝐽[𝑛]) 𝑓0[𝑛] = 𝑓0[𝑛 − 1] − �̅��̅�(𝐽[𝑛]) 

𝑧0 = 𝑒𝑥𝑝(𝑗2𝜋𝑓0𝑇𝑠) 𝑧0 = 𝑒𝑥𝑝(𝑗2𝜋𝑓0𝑇𝑠) 

Cost 

function 
𝐽[𝑛] = 𝐸{|𝑥𝑓[𝑛]|2} 𝐽[𝑛] = 𝐸{|𝑦𝑚[𝑛]|2} 𝐽[𝑛] = 𝐸{|𝑥𝑓[𝑛]|2} 𝐽[𝑛] = 𝐸{|𝑦𝑚[𝑛]|2} 

Stochastic 

gradient 
𝑔(𝐽[𝑛]) = 𝛻𝑍0

(𝐽[𝑛]) �̅�(𝐽[𝑛]) = 𝛻𝑓0
(𝐽[𝑛]) �̅�(𝐽[𝑛]) = 𝛻𝑓0

(𝐽[𝑛]) �̅�(𝐽[𝑛]) = 𝛻𝑓0
(𝐽[𝑛]) 

Algorithm 

step 
𝜇[𝑛] =

𝛿

𝐸{|𝑥𝑟[𝑛]|2}
 �̅�[𝑛] =

𝛿̅

𝐸{|𝑥𝑟[𝑛]|2}
 �̅�(𝐵𝑛 , 𝑘𝛼) �̅�(𝐵𝑛) 

Parameters 

under 

optimization 

𝑘𝛼, 𝛿 and 𝑇 𝑘𝛼, 𝛿̅ and 𝑇 𝑘𝛼 and 𝐵𝑛 𝑘𝛼 and 𝐵𝑛 
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Figure 7. Regular ANF 2 optimization, with the optimized 

trade-off: 𝑘𝛼 = 0.8, δ = 2.4e13, 𝑇 = 0.7 and 𝑎 = 0.9. 

  

Figure 8. Standard FLL optimization, with the optimized 

trade-off: 𝑘𝛼 = 0.8, 𝐵𝑛 = 6 MHz and 𝑎 = 0.9. 

IV. PERFORMANCE EVALUATION OF FLL-EQUIVALENT ANFS 

In this section, the CAF distortion analysis, conducted in Sections II and III on the basis of the 𝛼𝑚𝑒𝑎𝑛  parameter for a case of 

strong jamming power, is completed for several values of Jammer-to-Noise ratio and Jammer-to-Signal conditions. Exploiting the 

equivalence of the regular ANF structures with the corresponding FLL-based structures, as well as the similarity of the optimized 

performance proved in the previous section, the analysis presented hereafter has been specifically focused on the FLL-equivalent 

architectures only.  

The performance evaluation tests are conducted via simulation, with the same setup introduced previously. In addition, an 8th 

order Butterworth FE filter, with 20.46 MHz pass-band is employed, while no Analog-to-Digital Converter (ADC) is adopted to 

intentionally preserve the signal full dynamic with no quantization losses. The signal and noise density powers are set respectively 

to 𝑃𝐶 = −146.3 dBW and 𝑁0 = −201.3 dBW/Hz, resulting in a carrier to noise ratio 𝐶/𝑁0 of 55 dB-Hz. A wide-sweep slow rate 

jamming signal, whose features are reported in Section II, is then added to the baseband complex envelope of the clean signal: three 

jamming powers 𝑃𝐽 = {−130, −110, −103} dBW  are considered to simulate respectively a weak, medium and strong jammer 

scenarios, resulting in 𝐽/𝑁 = {−1.8, 18.2, 25.2} dB and 𝐽/𝑆 = {16.3, 36.3, 43.3} dB. 

The generated signal is given as input to the MATLAB® model of the FLL-equivalent ANFs, as detailed in Section III, using 

equations (6) and (8) for the notch filter and the adaptation algorithms described in Table 4. The filtered signal is finally processed 

by a MATLAB®-based GNSS software receiver, where only the acquisition stage is enabled. An FFT-based Parallel Code Phase 

Search Acquisition is adopted, with integration time 𝑇𝑖𝑛𝑡 = 1 ms, one coherent/non-coherent sums and false alarm probability 𝑃𝑓𝑎 =

0.001. The 𝛼𝑚𝑒𝑎𝑛  metric is evaluated according to (15) and averaged along 50 ms total signal length. 

Figure 9 reports the 𝛼𝑚𝑒𝑎𝑛 evaluation for the three considered jamming scenarios for both the exponential filtering FLL (Figure 

9-(a), (c) and (e)) and the standard FLL (Figure 9-(b), (d) and (f)). In particular, the top subplot shows 𝛼𝑚𝑒𝑎𝑛  as a function of the 

pole contraction factor 𝑘𝛼  and the loop bandwidth 𝐵𝑛 , while the bottom one illustrates the successful acquisition percentage γ, 

defined as the total percentage of time in which the signal has been successfully acquired. The grey dashed line and grey bars are 

used for the unfiltered signal (ANF disabled), as reference, while all other colors represent the filtered signal (one color per loop 

bandwidth 𝐵𝑛). For the readers’ convenience, the best combination of 𝑘𝛼 and 𝐵𝑛, i.e. the one achieving the maximum 𝛼𝑚𝑒𝑎𝑛 , is 

reported. A summary of the performance comparison is also shown in Table 5, where 𝛼𝑚𝑒𝑎𝑛  measurements in case of the filtered 

signal, using the best parameters setup of the FLL-equivalent ANFs, are evaluated against the unfiltered case for the three 𝐽/𝑁 

conditions mentioned above. In particular, the third row in Table 5 lists the 𝛼𝑚𝑒𝑎𝑛 when the ANF is disabled, while the fourth and 
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fifth rows contain those achieved with exponential FLL and standard FLL respectively. For both algorithms the percentage 

improvement with respect to the unfiltered case is also indicated in brackets. 

As shown in Figure 9-(a) and (b), the filtering is not really necessary in case of weak jamming power, as expected. Indeed, as 

clearly pointed out by the grey bars in the bottom plots of Figure 9-(a) and (b), the GNSS signal is always successfully acquired even 

when the ANF is disabled. The successful acquisition percentage results are also showing that when the ANF is active for 𝑘𝛼 > 0.2 

in Figure 9-(a) and 𝑘𝛼 > 0.3 in Figure 9-(b), the filtered signal is acquired for all the considered loop bandwidths with 100 % rate. 

The ANF effectiveness become evident when a significant increase of 𝛼𝑚𝑒𝑎𝑛  with respect to the unfiltered case can be measured. In 

this regard, the exponential FLL shows to be effective for 0.7 < 𝑘𝛼 < 0.9 and 𝐵𝑛 > 6 MHz with a maximum improvement of 

1.92 dB (4.4 % in Table 5) for the best parameters combination, i.e. 𝑘𝛼
𝑏𝑒𝑠𝑡 = 0.8 and 𝐵𝑛

𝑏𝑒𝑠𝑡 = 12 MHz. On the contrary, the 

standard FLL cannot be considered really effective. Anyway, for the best parameters choice, i.e. 𝑘𝛼
𝑏𝑒𝑠𝑡 = 0.9 and 𝐵𝑛

𝑏𝑒𝑠𝑡 = 4 MHz, 

performances are comparable with those when the ANF is disabled, with a negligible 𝛼𝑚𝑒𝑎𝑛 degradation (-0.6 % in Table 5). 

A remarkable 𝛼𝑚𝑒𝑎𝑛 improvement is instead observed for medium and strong jamming powers, as clearly appears in Figure 9-

(c), (d), (e) and (f). In all these cases, the ANF is fundamental. Without it, the acquisition is almost impossible, as shown in the bar 

graphs. Differently from the weak jammer condition, in these cases all the values of 𝑘𝛼 and 𝐵𝑛 are able to provide an improved 

𝛼𝑚𝑒𝑎𝑛, meaning that the filtering is beneficial whatever the amount of filtered power. In this regard, the colored bars clearly show a 

slight reduction of the useful 𝑘𝛼 range for an increasing jamming power. Focusing on the worst case, i.e. 𝐽/𝑁 = 25.2 dB in Figure 

9-(e) and (f), optimal γ are obtained for all the considered loop bandwidths when 𝑘𝛼 is in the range [0.5 − 0.8]. On the other hand, 

since the notch rejection bandwidth 𝐵3𝑑𝐵 ≈ (1 − 𝑘𝛼)𝑓𝑠/𝜋 [25], small values of 𝑘𝛼 are not recommended, in order to keep the notch 

bandwidth as narrow as possible, thus preserving the useful GNSS signal. We can also notice that for 𝑘𝛼 > 0.8, the exponential FLL 

performance is significantly much degraded for low bandwidths, namely 𝐵𝑛 < 6 MHz, with respect to the standard FLL (see the top 

subplots in Figure 9-(e) and (f)). This is in line with findings in [15], where it has been shown that for the exponential filtering FLL 

the pole contraction factor also determines the decay rate of the exponential filter, namely the bigger 𝑘𝛼 the slower the filter will be, 

thus requiring higher 𝐵𝑛 to increase its reactivity. 

In Table 5 the exponential and standard FLLs get maximum 𝛼𝑚𝑒𝑎𝑛 improvement of 89.1 % and 92.3 % respectively for a medium 

jammer power. In case of strong jammer, such improvement slightly decreases to 68.7 % and 75.1 % respectively. Furthermore, the 

standard FLL overcomes the exponential FLL for medium-strong jammer with about 3 % and 6 % advantage, while showing a 5 % 

degradation for weak jamming signal. While the former situation finds explanation in the faster reactivity of the standard FLL to the 

frequency discontinuities produced by the jammer, as pointed out in [15], the latter has to be likely searched in the adaptation rule. 

Minimizing the MA output provides a better tracking performance at the price of reducing the capability of discriminating the 

interference signal from the useful one: this becomes particularly relevant for lower 𝐽/𝑁 situations. 

According to the above analysis and as a general observation, all these results clearly demonstrate that the pole contraction factor 

is the only parameter having a significant impact on the 𝛼𝑚𝑒𝑎𝑛 metric, while the loop bandwidth does not have a noteworthy effect. 

This could be partly explained by the objective of the acquisition stage: a rough estimation of the code delay and Doppler frequency. 

More relevant differences are expected in the tracking stage, where such estimation has to be refined in order to lock the GNSS 

signal. 

Accepting a small degradation for low 𝐽/𝑁 conditions, 𝑘𝛼 = 0.8 seems to be a good choice for both the FLL models, while 

4 MHz ≤ 𝐵𝑛 ≤ 6 MHz and 8 MHz ≤ 𝐵𝑛 ≤ 12 MHz are recommended for the standard FLL and the exponential FLL respectively. 

This further supports the findings in [15]: the standard FLL requires smaller loop bandwidths, thus implying less noise entering the 

system and consequently lower frequency jitter (standard deviation of the notch frequency error). 
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(a) (b) 

    
(c) (d) 

    
(e) (f) 

Figure 9. 𝛼𝑚𝑒𝑎𝑛 and successful acquisition percentage γ evaluated as a function of the pole contraction factor 𝑘𝛼 and the loop 

bandwidth 𝐵𝑛 for the standard FLL and the exponential FLL ANFs respectively in case of 𝐽/𝑁 = −1.8 dB (a)(b), 𝐽/𝑁 = 18.2 dB 

(c)(d) and 𝐽/𝑁 = 25.2 dB (e)(f). Constant 𝐶/𝑁0 = 55 dB − Hz is considered. 
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Table 5. Comparison of 𝛼𝑚𝑒𝑎𝑛 measured for the signal filtered, using the FLL-equivalent ANFs with the best parameter settings, 

against the unfiltered case for several 𝐽/𝑁 conditions. 

 

FLL-equivalent ANFs 
𝑱/𝑵 (𝐝𝐁)  

-1.8 18.2 25.2 

ANF disabled 𝛼𝑚𝑒𝑎𝑛 (dB): 43.68 21.79 21.7 

Exponential FLL with best 

(𝒌𝜶, 𝑩𝒏) combination 

𝛼𝑚𝑒𝑎𝑛 (dB): 

(% gain)  

45.6  

(4.4 %) 

41.2  

(89.1 %) 

36.6  

(68.7 %) 

Standard FLL with best 

(𝒌𝜶, 𝑩𝒏) combination 

𝛼𝑚𝑒𝑎𝑛 (dB): 

(% gain) 

43.4  

(-0.6 %) 

41.9 

(92.3 %) 

38 

(75.1 %) 

 

V. CONCLUSIONS AND FUTURE WORK 

In this paper, four ANF architectures have been compared in terms of distortion induced by the filtering operation on the GNSS 

ranging code in case of swept-frequency (chirp) jamming signals. The adopted methodology is based on the 𝛼𝑚𝑒𝑎𝑛 metric evaluated 

in the acquisition stage of a GNSS receiver for different parameter settings and different 𝐽/𝑁 conditions. The obtained results showed 

that, with the best configuration of parameters, i.e. the one maximizing 𝛼𝑚𝑒𝑎𝑛 , the four architectures basically achieve similar 

performance. 

The 𝛼𝑚𝑒𝑎𝑛  evaluation is a first valid instrument to choose the best configuration setup for the ANF in order to maximize the 

acquisition performance. Anyway, a fair parameters optimization has to be performed taking into account other key metrics along 

the whole GNSS signal processing chain. For instance, the tracking stage performance needs to be evaluated in order to complete 

the distortion analysis. In this regard, the work conducted in [12] on a model of exponential FLL ANF to assess correlation distortions 

in the GNSS signal tracking loop could be extended to all other architectures considered above. This is expected to be performed in 

the next future in order to integrate and accomplish the methodology framework. 

In addition to this, the parameters optimization is recommended to be repeated on the final ANF implementation and test setup: 

the implementation of such interference mitigation techniques on a real receiver implies practical aspects having an impact on the 

performance. For instance, a trade-off between filtering performance and computational load has to be considered depending on the 

target implementation (hardware/software, floating point/fixed-point precision, real-time/post-processing). In [12] the FPGA 

implementation of an ANF required the introduction of computational approximations at the price of performance degradation. 

Furthermore, the bandwidth limitation and quantization effects of the employed front-end have to be carefully considered. Such 

limitations introduce quantization losses and saturation effects, able to modify the input signal. In this regards, as shown in [26], a 

jamming signal can be perceived as a form of pulsed interference if the front-end bandwidth is much narrower than the jamming one. 

In such case, the ANF behavior has to be verified and also other more suitable solutions, e.g. the pulse blanking, have to be evaluated. 

Finally, as pointed out in [1][12][26], a high number of bits of the ADC is highly recommended for interference mitigation purposes, 

in order to enhance the recovery of the useful GNSS signal after the filtering operation. 
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