Conference paper Open Access

Securing Visible Light Communications with Spatial Jamming

Sunghwan Cho; Gaojie Chen; Justin P. Coon


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <controlfield tag="005">20200120172540.0</controlfield>
  <controlfield tag="001">3582367</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Oxford</subfield>
    <subfield code="a">Gaojie Chen</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Leicester</subfield>
    <subfield code="a">Justin P. Coon</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1436663</subfield>
    <subfield code="z">md5:7ee6e6c42e94d08fb14d48323bf80595</subfield>
    <subfield code="u">https://zenodo.org/record/3582367/files/Jamming_ICC.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-07-15</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-5g-ppp</subfield>
    <subfield code="p">user-iorl</subfield>
    <subfield code="o">oai:zenodo.org:3582367</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">University of Oxford</subfield>
    <subfield code="a">Sunghwan Cho</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Securing Visible Light Communications with Spatial Jamming</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-5g-ppp</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-iorl</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">761992</subfield>
    <subfield code="a">Internet of Radio Light</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;In this paper, we propose a secure visible light communication (VLC) system with a novel spatial jamming scheme, which is inspired by practical observations of indoor VLC environments. In reality, probable and approximate locations of VLC users can be anticipated by analyzing the user behavior characteristic and the layout of the room. Based on the available location knowledge of a legitimate user (UE) and an eavesdropper (ED), an LED transmitter can choose to convey data or a jamming signal. We call this strategy spatial jamming. By employing a continuous LED model, the related optimization problems are formulated and analyzed based on the signal-to-interference-plus-noise ratio and the secrecy rate, respectively. The numerical results are provided to validate the prediction that the proposed spatial jamming scheme can effectively secure a VLC transmission even when the LEDs do not know the exact location of the ED.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">url</subfield>
    <subfield code="i">isCitedBy</subfield>
    <subfield code="a">https://ieeexplore.ieee.org/document/8761165</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1109/ICC.2019.8761165</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
36
36
views
downloads
Views 36
Downloads 36
Data volume 51.7 MB
Unique views 35
Unique downloads 34

Share

Cite as