Conference paper Open Access

UAV Classification With Deep Learning Using Surveillance Radar Data

Stamatios Samaras; Vasileios Magoulianitis; Anastasios Dimou; Dimitrios Zarpalas; Petros Daras


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="942" ind1=" " ind2=" ">
    <subfield code="a">2020-11-23</subfield>
  </datafield>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">UAVs</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Drones</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Classification</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Deep learning</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Surveillance radar</subfield>
  </datafield>
  <controlfield tag="005">20201123122709.0</controlfield>
  <controlfield tag="001">3582010</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">23-25 September 2019</subfield>
    <subfield code="g">ICVS 2019</subfield>
    <subfield code="a">12th International Conference on Computer Vision Systems</subfield>
    <subfield code="c">Thessaloniki</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">ITI CERTH</subfield>
    <subfield code="a">Vasileios Magoulianitis</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">ITI CERTH</subfield>
    <subfield code="0">(orcid)0000-0002-3950-3305</subfield>
    <subfield code="a">Anastasios Dimou</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">ITI CERTH</subfield>
    <subfield code="0">(orcid)0000-0002-9649-9306</subfield>
    <subfield code="a">Dimitrios Zarpalas</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">ITI CERTH</subfield>
    <subfield code="0">(orcid)0000-0003-3814-6710</subfield>
    <subfield code="a">Petros Daras</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">994036</subfield>
    <subfield code="z">md5:7de62bd1ecb60fa3bdffae6e4aa49e5d</subfield>
    <subfield code="u">https://zenodo.org/record/3582010/files/UAV4S_UAV Classification With Deep Learning Using Surveillance Radar Data_camera_ready.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">https://icvs2019.org/</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-11-23</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:3582010</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">ITI CERTH</subfield>
    <subfield code="a">Stamatios Samaras</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">UAV Classification With Deep Learning Using Surveillance Radar Data</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">740859</subfield>
    <subfield code="a">Advanced hoListic Adverse Drone Detection, Identification Neutralization</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;The Unmanned Aerial Vehicle (UAV) proliferation has raised many concerns, since their potentially malicious usage renders them as a detrimental tool for a number of illegal activities. Radar based counterUAV applications provide a robust solution for UAV detection and classification. Most of the existing research addresses the problem of UAV classification by extracting features from the time variations of the Fourier spectra. Yet, these solutions require that the UAV is illuminated by the radar for a longer time which can be only met by a tracking radar architecture. On the other hand, surveillance radar architectures don&amp;rsquo;t have such a cumbersome requirement and are generally superior in maintaining situational awareness, due their ability for constantly searching on a 360◦ area for targets. Nevertheless, the available automatic UAV classification methods for this type of radar sensors are relatively inefficient. This work proposes the incorporation of the deep learning paradigm in the classification pipeline, to provide an alternative UAV classification method that can handle data from a surveillance radar. Therefore, a Deep Neural Network (DNN) model is employed to discern between UAVs and negative examples (e.g. birds, noise, etc.). The conducted experiments demonstrate the validity of the proposed method, where the overall classification accuracy can reach up to 95.0%.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1007/978-3-030-34995-0_68</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
70
14
views
downloads
Views 70
Downloads 14
Data volume 13.9 MB
Unique views 60
Unique downloads 13

Share

Cite as