Conference paper Open Access

UAV Classification With Deep Learning Using Surveillance Radar Data

Stamatios Samaras; Vasileios Magoulianitis; Anastasios Dimou; Dimitrios Zarpalas; Petros Daras


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/3582010</identifier>
  <creators>
    <creator>
      <creatorName>Stamatios Samaras</creatorName>
      <affiliation>ITI CERTH</affiliation>
    </creator>
    <creator>
      <creatorName>Vasileios Magoulianitis</creatorName>
      <affiliation>ITI CERTH</affiliation>
    </creator>
    <creator>
      <creatorName>Anastasios Dimou</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-3950-3305</nameIdentifier>
      <affiliation>ITI CERTH</affiliation>
    </creator>
    <creator>
      <creatorName>Dimitrios Zarpalas</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-9649-9306</nameIdentifier>
      <affiliation>ITI CERTH</affiliation>
    </creator>
    <creator>
      <creatorName>Petros Daras</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-3814-6710</nameIdentifier>
      <affiliation>ITI CERTH</affiliation>
    </creator>
  </creators>
  <titles>
    <title>UAV Classification With Deep Learning Using Surveillance Radar Data</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2019</publicationYear>
  <subjects>
    <subject>UAVs</subject>
    <subject>Drones</subject>
    <subject>Classification</subject>
    <subject>Deep learning</subject>
    <subject>Surveillance radar</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2019-11-23</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="ConferencePaper"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3582010</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1007/978-3-030-34995-0_68</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;The Unmanned Aerial Vehicle (UAV) proliferation has raised many concerns, since their potentially malicious usage renders them as a detrimental tool for a number of illegal activities. Radar based counterUAV applications provide a robust solution for UAV detection and classification. Most of the existing research addresses the problem of UAV classification by extracting features from the time variations of the Fourier spectra. Yet, these solutions require that the UAV is illuminated by the radar for a longer time which can be only met by a tracking radar architecture. On the other hand, surveillance radar architectures don&amp;rsquo;t have such a cumbersome requirement and are generally superior in maintaining situational awareness, due their ability for constantly searching on a 360◦ area for targets. Nevertheless, the available automatic UAV classification methods for this type of radar sensors are relatively inefficient. This work proposes the incorporation of the deep learning paradigm in the classification pipeline, to provide an alternative UAV classification method that can handle data from a surveillance radar. Therefore, a Deep Neural Network (DNN) model is employed to discern between UAVs and negative examples (e.g. birds, noise, etc.). The conducted experiments demonstrate the validity of the proposed method, where the overall classification accuracy can reach up to 95.0%.&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/740859/">740859</awardNumber>
      <awardTitle>Advanced hoListic Adverse Drone Detection, Identification Neutralization</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
70
14
views
downloads
Views 70
Downloads 14
Data volume 13.9 MB
Unique views 60
Unique downloads 13

Share

Cite as