Conference paper Open Access

Semantics-Aware Virtual Machine Image Management in IaaS Clouds

Saurabh, Nishant; Remmers, Julian; Kimovski, Dragi; Prodan, Radu; Barbosa, Jorge G.


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Virtual machine image management</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">semantic similarity</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">storage optimization.</subfield>
  </datafield>
  <controlfield tag="005">20200120173844.0</controlfield>
  <controlfield tag="001">3581092</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">20-24 May 2019</subfield>
    <subfield code="g">IPDPS</subfield>
    <subfield code="a">2019 IEEE International Parallel and Distributed Processing Symposium</subfield>
    <subfield code="c">Rio, Brazil</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Innsbruck</subfield>
    <subfield code="a">Remmers, Julian</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Klagenfurt</subfield>
    <subfield code="a">Kimovski, Dragi</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Klagenfurt</subfield>
    <subfield code="a">Prodan, Radu</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">LIACC, Faculdade de Engenharia da Universidade do Porto</subfield>
    <subfield code="a">Barbosa, Jorge G.</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1811376</subfield>
    <subfield code="z">md5:bc5915af89ab342d2f2b0c16f86d0b63</subfield>
    <subfield code="u">https://zenodo.org/record/3581092/files/12.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-09-02</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:3581092</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">University of Klagenfurt</subfield>
    <subfield code="a">Saurabh, Nishant</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Semantics-Aware Virtual Machine Image Management in IaaS Clouds</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">825134</subfield>
    <subfield code="a">smART socIal media eCOsytstem in a blockchaiN Federated environment</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Infrastructure-as-a-service (IaaS) Clouds concurrently accommodate diverse sets of user requests, requiring an efficient strategy for storing and retrieving virtual machine images (VMIs) at a large scale. The VMI storage management require dealing with multiple VMIs, typically in the magnitude of gigabytes, which entails VMI sprawl issues hindering the elastic resource management and provisioning. Nevertheless, existing techniques to facilitate VMI management overlook VMI semantics (i.e at the level of base image and software packages) with either restricted possibility to identify and extract reusable functionalities or with higher VMI publish and retrieval overheads. In this paper, we design, implement and evaluate Expelliarmus, a novel VMI management system that helps to minimize storage, publish and retrieval overheads. To achieve this goal, Expelliarmus incorporates three complementary features. First, it makes use of VMIs modelled as semantic graphs to expedite the similarity computation between multiple VMIs. Second, Expelliarmus provides a semantic aware VMI decomposition and base image selection to extract and store non-redundant base image and software packages. Third, Expelliarmus can also assemble VMIs based on the required software packages upon user request. We evaluate Expelliarmus through a representative set of synthetic Cloud VMIs on the real test-bed. Experimental results show that our semantic-centric approach is able to optimize repository size by 2.2 - 16 times compared to state-of-the-art systems (e.g. IBM&amp;#39;s Mirage and Hemera) with significant VMI publish and slight retrieval performance improvement.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.3581091</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.3581092</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
53
18
views
downloads
All versions This version
Views 5353
Downloads 1818
Data volume 32.6 MB32.6 MB
Unique views 5050
Unique downloads 1414

Share

Cite as