Book section Open Access

The People Inside

Sherratt, Tim; Bagnall, Kate


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">National Archives of Australia</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">White Australia policy</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">archives</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">face detection</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">digital humanities</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">digital collections</subfield>
  </datafield>
  <controlfield tag="005">20200120174102.0</controlfield>
  <controlfield tag="001">3579530</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Tasmania</subfield>
    <subfield code="0">(orcid)0000-0003-1426-7294</subfield>
    <subfield code="a">Bagnall, Kate</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="4">edt</subfield>
    <subfield code="a">Kee, Kevin</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="4">edt</subfield>
    <subfield code="a">Compeau, Timothy</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">498715</subfield>
    <subfield code="z">md5:8c02e1d0d6f4c6edb1e3c47ea2b708c3</subfield>
    <subfield code="u">https://zenodo.org/record/3579530/files/The People Inside - final published.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-01-24</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:3579530</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">University of Canberra</subfield>
    <subfield code="0">(orcid)0000-0001-7956-4498</subfield>
    <subfield code="a">Sherratt, Tim</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">The People Inside</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Our collection begins with an example of computer vision that cuts through time and bureaucratic opacity to help us meet real people from the past. Buried in thousands of files in the National Archives of Australia is evidence of the exclusionary &amp;ldquo;White Australia&amp;rdquo; policies of the nineteenth and twentieth centuries, which were intended to limit and discourage immigration by non-Europeans. Tim Sherratt and Kate Bagnall decided to see what would happen if they used a form of face-detection software made ubiquitous by modern surveillance systems and applied it to a security system of a century ago. What we get is a new way to see the government documents, not as a source of statistics but, Sherratt and Bagnall argue, as powerful evidence of the people affected by racism.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isPartOf</subfield>
    <subfield code="a">10.3998/mpub.9964786</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">url</subfield>
    <subfield code="i">isIdenticalTo</subfield>
    <subfield code="a">https://www.fulcrum.org/epubs/5q47rq179?locale=en#/6/16[Kee-0008]!/4/2[ch01]/2/2[p11]/1:0</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.3579529</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="g">11-31</subfield>
    <subfield code="b">University of Michigan Press</subfield>
    <subfield code="z">978-0-472-90087-9</subfield>
    <subfield code="t">Seeing the Past with Computers: Experiments with Augmented Reality and Computer Vision for History</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.3579530</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="q">alternateidentifier</subfield>
    <subfield code="a">https://www.jstor.org/stable/j.ctvnjbdr0.4</subfield>
    <subfield code="2">url</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">section</subfield>
  </datafield>
</record>
223
57
views
downloads
All versions This version
Views 223230
Downloads 5757
Data volume 28.4 MB28.4 MB
Unique views 198205
Unique downloads 4747

Share

Cite as