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Abstract32

Understanding biodiversity changes in time is crucial to promptly33

provide management practices against diversity loss. This is over-34

all true when considering global scales, since human-induced global35

change is expected to make signi�cant changes on the Earth's biota.36

Biodiversity management and planning is mainly based on �eld ob-37

servations related to community diversity, considering di�erent taxa.38

However, such methods are time and cost demanding and does not39

allow in most cases to get temporal replicates. In this view, remote40

sensing can provide for a wide data coverage in a short period of time.41

Recently, the use of Rao's Q diversity as a measure of spectral diversity42

has been proposed in order to explicitly taking into account di�erences43

in a neighborhood considering abundance and relative distance among44

pixels. The aim of this paper was to extend such a measure over the45

temporal dimension and to present an innovative approach to calculate46

remotely sensed temporal diversity. We demonstrated that temporal47

beta-diversity (spectral turnover) can be calculated pixel-wise in terms48

of both slope and coe�cient of variation and further plotted over the49

whole matrix / image. From an ecological and operational point of50

view, for prioritisation practices in biodiversity protection, temporal51

variability could be bene�cial in order to plan more e�cient conser-52

vation practices starting from spectral diversity hotspots in space and53
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time. In this paper we delivered a highly reproducible approach to cal-54

culate spatio-temporal diversity in a robust and straightforward man-55

ner. Since it is based on open source code, we expect that our method56

will be further used by several researchers and landscape managers.57

keywords: biodiversity; ecological informatics; Rao's Q diversity; remote58

sensing; satellite imagery; temporal variability59

1 Introduction60

Understanding biodiversity changes in time is crucial to promptly provide61

management practices against diversity loss (Gaston, 2008).62

This has been proven for various part of the globe, considering di�erent63

biomes and habitat types like dry (Nagendra et al., 2010) and humid (Somers64

et al., 2015) tropical forests, savannas (Oldeland et al., 2010), grasslands65

(Feilhauer et al., 2013), among the others.66

This is overall true when considering global scales, since human-induced67

global change is expected to make signi�cant changes on the Earth's biota68

(Moreno et al., 2017). This is explicitly taken into account by the Sus-69

tainable Development Goals of the United Nations (https://www.un.org/70

sustainabledevelopment/sustainable-development-goals/), with Goal71

15 explicitly aiming to �halt biodiversity loss�.72
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However, biodiversity management and planning is mainly based on �eld73

observations related to community diversity, considering di�erent taxa, under74

the assumption of robust statistical sampling and proper methods of analysis75

(e.g. Chiarucci et al. (2017)). Such a method is time and cost consuming76

and does not allow in most cases to get temporal replicates.77

This led to the urgent need of developing worldwide research and stake-78

holders networks to face climate and biodiversity change at global scale, like79

the Global Climate Observing System (GCOS, https://public.wmo.int/),80

the Intergovernmental Panel on Climate Change (IPCC, http://www.ipcc.81

ch/) or the Group on Earth Observations - Biodiversity Observation Network82

(GEO BON, https://geobon.org/). Essential Climate Variables (ECVs) and83

the Essential Biodiversity Variables (EBVs, see Pereira et al. (2013)) were84

thus the main outputs of such networks, as proxies of Earth global change in85

space and time.86

In this framework, remote sensing has been proposed as a straightforward87

operational tool providing a wide data coverage in a short period of time88

(Rocchini and Di Rita, A. , 2005; Skidmore et al., 2015), helping to save89

costs and time. Furthermore, measures of diversity from remotely sensed vs.90

�eld data showed a positive relationship, leading to consider remote sensing91

diversity as a direct proxy of the variation of biodiversity in space (Gillespie92

et al., 2008; Lausch et al., 2016).93
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Most of the remote sensing-based measures of spectral diversity have been94

widely based on i) the spatial variability of pixel values by measuring pairwise95

distances in a spectral space (Feret and Asnaer, 2014; Somers et al., 2015) or96

on ii) measures of relative abundance of values based on information theory97

(Ricotta, 2005).98

Recently, Rocchini et al. (2017) proposed the use of Rao's Q diversity as a99

measure of spectral diversity which explicitly takes into account di�erences in100

a neighbourhood relying on abundance and relative distance among pixels,101

extending for the �rst time to 2D-matrices (satellite images) the measure102

�rstly proposed by Rao (1982).103

This might allow the so called continuous �eld mapping which in most104

cases has been applied to land cover classi�cation (Mathys et al., 2009) but105

it is also a valuable tool for diversity mapping over wide geographical re-106

gions, mainly based on moving window methods. Basically, starting from107

the spectral mixing space of a satellite image, one can measure the con-108

tinuous variability of pixel values in space by local-based measures, which109

maximise the contrast in spectral diversity highlighting hotspots of diversity,110

mainly related to transition zones in space (Small, 2005).111

The temporal dimension, coupled with spatial approaches, might help112

inferring biodiversity change over large areas. While this has been widely113

acknowledged in some ecological modelling practices, like in environmental114
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niche modelling (Feng and Papes, 2017), it has rarely been explicitly consid-115

ered when dealing with remotely sensed diversity measurements, over wider116

temporal scales. In this view, most of the research e�orts have been de-117

voted to phenology (He et al., 2009) without an explicit spatial approach to118

measure spectral turnover in space and time.119

The aim of this paper is to present an innovative approach to calculate120

the temporal change of remotely sensed diversity. We will �rst introduce the121

theoretical background of the diversity calculation in time and then provide122

an empirical example based on MODIS data, by also providing the com-123

plete R code (Appendix 1 or https://gitlab.com/danidr/temporal_rs_124

biodiversity/blob/master/RocchiniEtAl_2019_slopes.R).125

2 Benchmark example126

2.1 Algorithm development127

Rao's Q diversity explicitly considers both relative abundance and spectral128

distances among pixel re�ectance values as:129

Q =
∑∑

dij × pi × pj (1)

where dij = pairwise distance between pixels attaining to re�ectance val-130
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ues i and j, pi = relative abundance of pixels attaining to re�ectance value131

i, and pj = relative abundance of pixels attaining to re�ectance value j. As132

proposed by Rocchini et al. (2017), given an input 2D matrix (image)133

I =



P1,1 P1,2 P1,3 . . . P1,n

P2,1 P2,2 P2,3 . . . P2,n

...
...

... . . . ...

Pm,1 Pm,2 Pm,3 . . . Pm,n


(2)

where P=input pixel, Rao's Q can be calculated by a moving window (spatial134

kernel or 2D matrix)135

M =


P1,1 P1,2 P1,3

P2,1 P2,2 P2,3

P3,1 P3,2 P3,3

 (3)

using n× n pixels in a neighbourhood of a given site (pixel) by returning an136

output map of local alpha-diversity hotspots.137

Rao's Q diversity value applied to remotely sensed images allows one to138

discriminate among environmental situations with low or high evenness, as139

the mostly used Shannon's H ′ does, but also including distance among pixel140

vaues. Given an image I, Figure 1 shows four di�erent situations, starting141
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from the lowest diversity in the environment (Figure 1A), with pixels which142

are similar to each other (low distance) and with one value dominating the143

landscape (low evenness). On the contrary, Figure 1D represents the high-144

est possible diversity with a high distance among pixels and a high evenness145

(equidistribution of pixel values). While information theory based on Shan-146

non's H ′ allows discriminating between extreme situations, it does not allow147

discriminating diversity hotspots deriving from i) a high evenness of pixel148

values but with a low distance among them (similar environments) and ii) a149

high evenness of pixel values with a high distance among them (very di�erent150

environments). Since in environmental science and in remote sensing of en-151

vironmental diversity the interest is pointed to the detection of strong di�er-152

ences among environment, i.e. diversity hotpots, the Rao's Q diversity seems153

to perform better with respect to common information theory based calculus.154

The mathematical calculation of Shannon'sH ′ and Rao'sQ values is provided155

in Appendix 2, which is performed by the algorithm described in Rocchini et156

al. (2017) and freely available under the GitHub �agship project at: https:157

//github.com/mattmar/spectralrao/blob/master/spectralrao.r.158

In general, the output Rao's Q diversity map is derived at a certain time159

t0, based on the date of the original input image being used. In this paper we160

are aiming at summarizing di�erent output maps derived in di�erent times161
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as:162

Ot0 =



P1,1t0 P1,2t0 P1,3t0 . . . P1,nt0

P2,1t0 P2,2t0 P2,3t0 . . . P2,nt0

...
...

... . . . ...

Pm,1t0 Pm,2t0 Pm,3t0 . . . Pm,nt0


(4)

Ot1 =



P1,1t1 P1,2t1 P1,3t1 . . . P1,nt1

P2,1t1 P2,2t1 P2,3t1 . . . P2,nt1

...
...

... . . . ...

Pm,1t1 Pm,2t1 Pm,3t1 . . . Pm,nt1


(5)

Otn =



P1,1tn P1,2tn P1,3tn . . . P1,ntn

P2,1tn P2,2tn P2,3tn . . . P2,ntn

...
...

... . . . ...

Pm,1tn Pm,2tn Pm,3tn . . . Pm,ntn


(6)

In other words, the present manuscript seeks to �nd a method to account163

for the change in time of Rao's Q diversity.164

Let QP0t0 be the Rao's Q value at a given site (pixel P0) in a certain mo-165

ment (time t0, Figure 2). The QP0tx value can be viewed in a linear time space166

from t0 to tn. Once such values have been plotted, a locally weighted scatter-167

plot smoothing (LOWESS) function, also referred to as LOESS (Cleveland168
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, 1979; Cleveland and Devlin, 1988), can be estimated, which reduces to a169

linear function y ∼ x in case of linear variability. LOESS �ts a function to a170

subset of the data, generally splitting the explanatory variable and giving a171

higher weight to points near the point where the response is being estimated.172

The mean slope (trend) of the LOESS is expected to represent the change173

of Rao's Q diversity in time. In order to get a pixel-wise approximation of174

the slope we extracted the derivative of the Rao's Q diversity smoothed175

temporal function at each ti, computing the 4y/4x. Then, the descriptive176

statistics over the whole time series were calculated, giving information on177

the smoothed function trend.178

As a proxy of the variation of the Rao's Q diversity values over the whole179

time series, a temporal coe�cient of variation index (CV) was computed180

following Hijmans (2004). This index, expressed as a percentage, is the ratio181

between the standard deviation and the mean of all the Rao's Q diversity182

values. Larger percentages represent a higher spectral-turnover, providing a183

beta-diversity quanti�cation.184

Summarising, the average slope of the LOESS curve is expected to repre-185

sent the amount of mean diversity along a temporal trend, while its coe�cient186

of variation would represent the temporal turnover in the spectral Rao's Q.187

Temporal diversity can thus be calculated pixel-wise in terms of both slope188

and coe�cient of variation and further plotted over the whole matrix / image.189
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In order to implement an empirical example of the method being pro-190

posed, we made use of the free set of Rao's Q data based on MODIS NDVI191

images at a resolution of 5km provided in Rocchini et al. (2018). A sketch192

of the original MODIS NDVI input set is provided in Appendix 3. In order193

to rely on a high complexity landscape we decided to focus on the italian194

peninsula, which guarantees a high ecological gradient from the sea to high195

mountain alps (until 4000 metres). Based on the open source code provided196

in Appendix 1, the method can be straightfowardly extended to other areas,197

habitats, or biomes. The �nal stack of layers consisted of 17 Rao's Q images198

gathered from 2000 to 2016 in June (Figure 3).199

Each pixel was projected in a temporal space according to Figure 2 from200

2000 to 2016, and a LOESS function with automatic smoothing parameter201

selection through bias-corrected Akaike information criterion (AICc) was �t-202

ted relying on the r package fANCOVA (Wang, 2010), building a global set203

of N functions where N = number of pixels in the image. The mean slope204

and the coe�cient of variation along the temporal gradient of the LOESS205

function was calculated for each pixel and further spatially plotted.206
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2.2 Results207

Rao's Q temporal diversity considering LOESS mean slope (mean tempo-208

ral diversity) and LOESS coe�cient of variation (temporal turnover) showed209

a discriminant pattern among di�erent areas (Figure 4). Both measures210

detected a higher temporal diversity in areas with higher landscape morpho-211

logical complexity detected by the spatial Rao's Q (see Figure 3) with an212

enhancement in the relative temporal beta-diversity (turnover) detected by213

the coe�cient of variation of the LOESS function.214

Spatial Rao's Q showed a high value in Italy in topographically and eco-215

logically complex mountain areas, including Alps and Appennines (central216

italy) (Figure 3). However, once considering the temporal dimension, alpine217

areas showed a higher relative value of Rao's Q temporal variation, consid-218

ering both mean and turnover in temporal diversity (Figure 4). This pattern219

has also been hypothesized, but never speci�cally tested until now, by Roc-220

chini et al. (2011) who stressed the possibility of a higher variation in space221

and time of top mountainous areas (in particular, Alps) which are expected222

to show a high amount of ecologically contrasting traits, from agricultural223

areas to conifers and broadleaf forests, to pastures, grasslands and bare rocks224

(Pelorosso et al., 2011).225
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3 Discussion226

Estimating values of diversity over an area given a sample is crucial for a227

number of di�erent ecological tasks (Granger et al., 2015). Remote sensing228

certainly represents a powerful tool for getting estimated diversity values229

in a 2D surface. Extending on Ricotta (2008), who calculated community230

beta-diversity starting from species presence / absence scores, in this paper231

we propose to substitute such scores with pixel based values, being such232

values diversity measures (like the Rao's Q scores) or original re�ectances233

in a satellite image, by further redistributing them in a new time-system to234

carry out a LOESS based calculation of diversity changes.235

In this view, the variability of diversity over space has been investigated236

at di�erent spatial scales and with di�erent approaches (refer to Rocchini237

et al. (2010) for a review). As stressed by Leitao et al. (2015), it might238

be crucial to �nd methods readily available to deal with time series data, in239

order to potentially account for the time axis in the analysis of beta-diversity240

change.241

Our method represents a powerful approach to estimate remotely sensed242

beta-diversity in time, at large spatial extents. Once coupled with hierar-243

chical methods to also account for di�erent scales of diversities, e.g. with244

Bayesian hierarchical modelling (Zhang et al., 2014), our approach might245
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represent a benchmark for modelling the variability in space and time of246

diversity at multiple spatial scales. It is far beyond the aim of this paper247

to test the sensitivity of the method to di�erent spatial grains and spectral248

resolutions, but since it is based on pixel distances and relative abundance249

we expect that it can be applied to any kind of multi- or hyper-volumes like250

multi- or hyper-spectral images at di�erent spatial and spectral resolutions251

from high (e.g. Quickbird, Ikonos) to medium (e.g. Sentinel-2 or Landsat252

data) and low grains (like MODIS data in our case).253

Furthermore, our method might help measuring not only spatial varia-254

tions in beta-diversity to be related directly to the e�ect of ecosystem dy-255

namics (Wang and Loreau, 2014), but also supply a synthesis of temporal256

variations in beta-diversity thus implicitly incorporating such dynamcis.257

In some cases, spatial non-stationarity has been advocated as one of the258

major problems when the variability of a certain variable is non-uniform in259

space (Osborne et al., 2007). In our case, we would promote our approach to260

also account for potential anomalies, or simply spots of diversity variation in261

time, when measuring beta-diversity from satellites. As an example, Mathys262

et al. (2009) proved that, when dealing with land cover continuous variability263

over space, adding spectral diversity derived from remotely sensed images264

could improve modelling performance.265

There are intrinsic di�culties related to the estimate of biodiversity changes266
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in time (temporal beta-diversity) mainly related to the sampling replication267

in the same location with the same sampling protocol. Permanent plots268

arranged in networks like the Long Term Ecosystem Research in Europe269

(LTER, http://www.lter-europe.net/) have been explicitly implemented to270

solve the problem. However, they represent sporadic and spatially scattered271

locations in local areas. Once zones with high spatial and temporal variabil-272

ity have been detected, the attained information could be a powerful tool for273

guiding �eld based surveys of species diversity (Rocchini et al., 2005). This274

is overall true when considering ancillary models speci�cally dedicated to the275

development of e�cient sampling designs, based on e.g. sampling optimisa-276

tion based on synthetic maps (Schweiger et al., 2015) or on virtual species277

sets (Garzon-Lopez et al., 2016).278

Landscape metrics (e.g., patch area and connectivity) have been widely279

used as tools for identi�cation of areas with higher biodiversity, but they280

mostly refers to categorical maps such as land cover (Katayama et al., 2014;281

Morelli et al., 2018). However, land cover maps are generally an oversimpli�-282

cation of habitat variability Amici et al. (2017) and should be used with care283

to avoid the underestimation of the continuous ecological variability over the284

landscape (Austin , 1987; Palmer et al., 2002; Rocchini, 2007).285

In this paper, the continuous variability of spectral pixel values, coupled286

with the temporal dimension provided for additional information on the vari-287
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ation of ecosystems, allowing a better detection of highly diverse spot in space288

and in time, considering di�erent time spans t0, t1, ..., tn. Strictly speaking,289

including temporal variation in the analysis of diversity from remote sensing290

might provide additional information to spatial kernels measured at t0.291

Obviously, the variability of the spectral signal is not the only proxy292

of diversity, and in some cases (e.g. in urban areas) a high environmental293

variability is not necessarily related to a high amount of biodiversity in the294

�eld (Ricotta et al., 2010). However, in case of natural and seminatural ar-295

eas, spectral variability might represent one of the main proxies of diversity296

(Skidmore et al., 2015; Schmeller et al., 2017). Hence, in order to measure297

spatial and temporal changes in diversity, it could be coupled with additional298

variables such as: i) climatic predictors (Zellweger et al., 2019), ii) soil prop-299

erties (Tuomisto et al., 2003), iii) topographical complexity (Badgley et al.,300

2017). Furthermore, in this manuscript we made use of a spectral index like301

the inter-annual NDVI as an example dataset to calculate spatial heterogene-302

ity, as in Oindo and Skidmore (2002) or Gillespie (2005) and more recently303

Feilhauer et al. (2012), by deriving the Rao's Q diversity on a continuous304

data matrix to monitor heterogeneity changes through time, although the305

annual inter-variation of productivity could be related to several factors, and306

not just to niche-based diversity changes. We refer to the debate between307

Krishnaswamy et al. (2009) and Rocchini (2009) about problems related to308
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alpha- and beta-diversity measurement from NDVI.309

4 Conclusion310

In this paper we presented a robust and reproducible approach to estimate311

the temporal ecosystems' beta-diversity based on a locally weighted scat-312

terplot smoothing. We applied it to the spatial Rao's Q diversity proposed313

by Rocchini et al. (2017), but the method could be ported to any spatial314

diversity measure made in a spectral space.315

Being based on open source coding, we expect a high reproducibility of the316

proposed approach, and stimulate researchers to test it in di�erent habitats,317

by varying spatial grains and extents and potentially making use of di�erent318

sensors.319

The open source code provided will guarantee the robustness and repro-320

ducibility of the method. In fact, we are expecting that such a code will be321

used by other researchers to further develop additional algorithms on tem-322

poral variability measurement from satellite images.323

From an ecological and operational point of view, for species inventory-324

ing maximisation in biodiversity protection, advocated by the Sustainable325

Development Goal 15 (�halt biodiversity loss�) and scienti�cally proposed by326

Rocchini et al. (2005) and more recently reviewed by Schmeller et al. (2017),327
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the temporal variability, together with the spatial one, could be bene�cial in328

order to plan more e�cient conservation practices starting with those diver-329

sity hotspots detected in space and time by remote sensing techniques.330

Attempts have been made to measure the spatial sensitivity of the rela-331

tion between species and spectral diversity (Wang et al., 2018) which might332

impact further management practices if disregarded. However, as far as we333

know, nothing has been done to project it also in time. Our method repre-334

sents a potential benchmark for applying such a variation measurement in335

time, which could be extended i) not only to other types of sensors in satel-336

lite images but to every kind of 2D matrices including species-plot arrays,337

ii) to other methods such as the measure of spatial and temporal autocorre-338

lation (Guelat and Kery, 2008), iii) to additional ecospaces (sensu Dick and339

La�amme (2018)) by fuzzy modelling.340
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Figure 1: Synthetic example showing four di�erent environmental situations
and their relative Shannon's H ′ and Rao's Q indices. (A) Lower diversity in
terms of both evenness and distance among pixel values; (B) and (C) interme-
diate situations; (D) higher diversity in terms of both evenness and distance
among pixel values. Refer to the main text for additional information and
to Appendix 2 for the mathematical calculation.
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Year 1

Year 10

Pixel 1 Pixel 1 temporal trend

Figure 2: The Rao's value QP0t0 at a given site (pixel P0) in a certain moment
(time t0) can be plotted on a time scale. Once all the values from QP0t0 to
QP0tn have been plotted, a smooth LOESS function can be estimated and its
slope (trend) of coe�cient of variation would represent the mean variation
of Q in time and its temporal turnover.
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Figure 3: Spatial representation of the free set of Rao's Q data based on
MODIS NDVI images at a resolution of 5km provided by Rocchini et al.
(2017). The �nal stack of layers consists of 17 Rao's Q images gathered from
2000 to 2016 in June.

Figure 4: Rao's Q temporal diversity considering LOESS mean slope (mean
temporal diversity) and LOESS coe�cient of variation (temporal turnover).
Both measures detected a higher temporal diversity in areas with higher
landscape morphological complexity detected by the spatial Rao's Q.
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Appendix 1 - R code554

1###################################555

## R CODE FOR APPLYING THE APPROACH PRESENTED IN :556

3## Rocchini , D. , Marcantonio , M. , Da Re , D. , Ch i r i c i , G. ,557

Gal luzz i , M. , Lenoir , J . , Ricotta , C. , Torresani , M. , Ziv , G.558

(2019) . Time−l a p s i ng b i o d i v e r s i t y : an open source method f o r559

measuring d i v e r s i t y changes by remote s en s ing . Remote560

Sens ing o f Environment .561

###################################562

5563

## Set working d i r e c t o r y and load l i b r a r i e s564

7setwd ( "/home/TemporalAlfaDiv/" )565

l i b r a r y ( r a s t e r )566

9l i b r a r y ( p a r a l l e l )567

l i b r a r y (fANCOVA) # To automat i ca l l y s e l e c t l o e s s smoothing568

parameters s e l e c t us ing a i c c569

11l i b r a r y ( ggp lot2 )570

l i b r a r y ( r a s t e rV i s )571

13l i b r a r y ( p ly r )572

l i b r a r y ( RColorBrewer )573

15l i b r a r y ( g tab l e )574

l i b r a r y ( g r id )575

35



17l i b r a r y ( gr idExtra )576

l i b r a r y ( ggpubr )577

19578

#### 1. Load data ####579

21load ( "/home/TemporalAlfaDiv/ a l l_raoQ_5km.RData" )580

rao_stack<−s tack ( rao2000_5km, rao2001_5km , rao2002_5km , rao2003_5581

km , rao2004_5km , rao2005_5km,582

23rao2006_5km, rao2007_5km, rao2008_5km, rao2009_5583

km, rao2010_5km, rao2011_5km,584

rao2012_5km, rao2013_5km, rao2014_5km, rao2015_5585

km, rao2016_5km)586

25587

s<−as . l i s t ( rao_stack )588

27589

##Cut on I t a l y590

29s_red<−mclapply ( s , f unc t i on (x ) {y=crop (x , extent (0 ,20 , 36 , 50 ) ) ;591

re turn (y ) } ,mc . co r e s=detectCores ( ) )592

593

31##Derive va lue s from r a s t e r and put them in a 3D array594

rao<−mclapply ( s_red , trim ,mc . co r e s=8)595

33raoV<−mclapply ( rao , getValues , mc . co r e s=8)596

raoA<−array ( as . numeric ( u n l i s t ( raoV ) ) , dim=c (336 , 275 , 17) )597

35598

#### 2. Apply l o e s s on the time s e r i e s ####599

36



37#Loess smoothing parameters are automat i ca l l y s e l e c t e d us ing a i c c600

#The d e r i v a t i v e o f a func t i on i s dy/dx , which can be approximated601

by Î�y/Î�x , that i s , " change in y over change in x " . This602

can be wr i t t en in R us ing d i f f f unc t i on603

39#in order to get an approximation to the d e r i v a t i v e o f the604

f unc t i on at each x605

606

41s t a t s<−c ( "mean" , "min" , "max" )607

x l<−seq (2000 :2016)608

43out l <− rep ( l i s t ( matrix ( nrow=336 , nco l =275) ) ,3 )609

prd <− array ( as . numeric (NA) , dim=c (336 , 275 , 17) )610

45611

f o r ( r in 1 : 336 ) {612

47opt ions (warn=−1)613

f o r ( c in 1 : 275 ) {614

49i f ( any ( i s . na ( raoA [ r , c , ] ) ) ) {615

next ( )616

51} e l s e {617

prd [ r , c , ]<−p r ed i c t ( l o e s s . as ( seq ( 1 : 1 7 ) , raoA [ r , c , ] , c r i t e r i o n618

= c ( " a i c c " ) , degree=1, p l o t = F) )619

53f o r ( s in 1 : 3 ) {620

out l [ [ s ] ] [ r , c ]<−sapply ( l i s t ( d i f f ( prd [ r , c , ] ) / d i f f ( x l ) ) , get621

( s t a t s [ s ] ) , na . rm=T)622

55}623
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}624

57}625

opt ions (warn=0)626

59}627

628

61##Make an output r a s t e r map629

raoTs lopes <− s tack ( s_red [ [ 1 ] ] , s_red [ [ 1 ] ] , s_red [ [ 1 ] ] )630

63631

##Add mean , min and max matr i ce s632

65raoTs lopes_out <− s tack ( l app ly ( 1 : 3 , f unc t i on (x ) {633

va lue s ( raoTs lopes [ [ x ] ] )<−as . numeric ( ou t l [ [ x ] ] ) ;634

67names ( raoTs lopes [ [ x ] ] )<−c ( "mean" , "min" , "max" ) [ x ] ;635

re turn ( raoTs lopes [ [ x ] ] )636

69}) )637

638

71p lo t ( raoTs lopes_out )639

640

73## Compute c o e f f i c i e n t o f v a r i a t i o n641

rao_stack_i t<−crop ( rao_stack , extent (0 , 20 , 36 , 50 ) )642

75rao_stack_i t<−s tack ( rao_stack_i t )643

rao_mean<−c a l c ( rao_stack_i t , mean)644

77rao_sd<−c a l c ( rao_stack_i t , sd )645

rao_CV<−( ( rao_sd ) /(1+rao_mean) ) ∗100646

79names ( rao_CV)<−" rao_CV"647
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648

81raoTs lopes_out<−s tack ( raoTs lopes_out , rao_CV)649

p lo t ( raoTs lopes_out )650

83651

##save r a s t e r s652

85stackSave ( raoTs lopes_out , " raoTs lopes " )653

654

87#### 3. p l o t ####655

656

89##plo t parameters657

pal<−brewer . pa l (9 , "YlGnBu" )658

91myTheme <− rasterTheme ( r eg i on = pal )659

660

93utm32n<−" +pro j=utm +zone=32 +e l l p s=WGS84 +datum=WGS84 +un i t s=m +661

no_de f s +towgs84=0 ,0 ,0"662

c r s ( raoTs lopes_out )<−"+pro j=l ong l a t +datum=WGS84 +no_de f s +e l l p s=663

WGS84 +towgs84=0 ,0 ,0"664

95raoTs lopes_out<−pro j e c tRas t e r ( raoTs lopes_out , c r s=utm32n )665

p1<− l e v e l p l o t ( abs ( raoTs lopes_out [ [ 1 ] ] ) , main= "Mean" , s c a l e s=666

l i s t ( draw=FALSE) , contour = FALSE, margin = FALSE, par .667

s e t t i n g s = myTheme, ylab= "" , xlab= "" )668

97p2<− l e v e l p l o t ( raoTs lopes_out [ [ 2 ] ] , main= "Min" , s c a l e s=l i s t ( draw669

=FALSE) , contour = FALSE, margin = FALSE, par . s e t t i n g s =670

myTheme, ylab= "" , xlab= "" )671
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p3<− l e v e l p l o t ( raoTs lopes_out [ [ 3 ] ] , main= "Max" , s c a l e s=l i s t (672

draw=FALSE) , contour = FALSE, margin = FALSE, par . s e t t i n g s =673

myTheme, ylab= "" , xlab= "" )674

99p4<− l e v e l p l o t ( abs ( raoTs lopes_out [ [ 4 ] ] ) , main= "CV" , s c a l e s=l i s t675

( draw=FALSE) , contour = FALSE, margin = FALSE, par . s e t t i n g s676

= myTheme, ylab= "" , xlab= "" )677

678

101g r id . arrange (p1 , p2 , p3 , p4 , nrow=2)679

ggsave ( " raoRs lopes . t i f f " , he ight=8, width=12, un i t s=" in " , dpi680

=300 , p l o t= pp , path = "/home/TemporalAlfaDiv/img/" )681

103682

#### Appendix : MODIS NDVI ####683

105load ( "/home/TemporalAlfaDiv/ a l l_NDVI_5km.RData" )684

ndvi_stack<−s tack ( r a s t e r (NDVI_07_2000_5km) , r a s t e r (NDVI_07_2001_5685

km) , r a s t e r (NDVI_07_2002_5km) , r a s t e r (NDVI_07_2003_5km) ,686

107r a s t e r (NDVI_07_2004_5km) , r a s t e r (NDVI_07_2005_5687

km) , r a s t e r (NDVI_07_2006_5km) , r a s t e r (NDVI_07_2007_5km) ,688

r a s t e r (NDVI_07_2008_5km) , r a s t e r (NDVI_07_2009_5689

km) , r a s t e r (NDVI_07_2010_5km) , r a s t e r (NDVI_07_2011_5km) ,690

r a s t e r (NDVI_07_2012_5km) , r a s t e r (NDVI_07_2013_5km) , r a s t e r (691

NDVI_07_2014_5km) , r a s t e r (NDVI_07_2015_5km) , r a s t e r (NDVI_07_692

2016_5km) )693

109694

c r s ( ndvi_stack )<−"+pro j=l ong l a t +datum=WGS84 +no_de f s +e l l p s=695
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WGS84 +towgs84=0 ,0 ,0"696

111ndvi_stack<−crop ( ndvi_stack , extent (0 , 20 , 36 , 50 ) )697

ndvi_stack<−pro j e c tRas t e r ( ndvi_stack , c r s=utm32n )698

113annual_ndvi<−as . cha rac t e r (2000 :2016)699

rastNam<−as . cha rac t e r (2000 :2016)700

115701

##Time−s e r i e s p l o t702

117mapTheme <− rasterTheme ( r eg i on=brewer . pa l (8 , "Greens" ) )703

p12<− l e v e l p l o t ( ndvi_stack , xlab="" , ylab="" , s c a l e s=l i s t ( draw=704

FALSE) , names . a t t r=rastNam ,705

119l ayout=c (6 , 3) , contour = FALSE, margin = FALSE,706

par . s e t t i n g s = mapTheme , main= "NDVI 2000−2016" )707

708

121t i f f ( "img/ndvi2000−2016_GreenTheme . t i f f " , he ight = 10 , width =709

13 , r e s =300 , un i t s=" in " )710

p12711

123dev . o f f ( )712
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Appendix 2 - Synthetic example of Rao's Q di-713

versity index calculation714

We provide a mathematical example of the calculation of Shannon's H ′ and715

Rao's Q diversity indices based on the synthetic examples provided in Figure716

1. We will apply such indices to the input image (matrix) I with the highest717

diversity (Figure 1D). The calculation can then be translated to any matrix.718

719

Let I =


1 7 10

100 102 150

200 220 255

 be the input image on which the calcula-720

tion is applied. Shannon's H ′ turns out to be H ′ = −
∑

p × ln(p) where721

p=proportion of each pixel value. Since p is 1
9
, in this case, hence H ′ =722

9× 0.11× ln(0.11) = 2.197.723

Rao's Q diversity adds to such abundance-based calculation the distances724

among pixel values as Q =
∑∑

dij × pi × pj. A distance matrix is �rst725

calculated, returning N ×N distances, where N=number of input pixels (in726

this case 9), as:727
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Di=



0 6 9 99 101 149 199 219 254

6 0 3 93 95 143 193 213 248

9 3 0 90 92 140 190 210 245

99 93 90 0 2 50 100 120 155

101 95 92 2 0 48 98 118 153

149 143 140 50 48 0 50 70 105

199 193 190 100 98 50 0 20 55

219 213 210 120 118 70 20 0 35

254 248 245 155 153 105 55 35 0



.728

729

According to the Rao's Q formula, each pairwise distance between the730

ith and the jth pixel in the image is then multiplied by their proportions pi731

and pj, hence by 1
9
× 1

9
= 1

81
= 0.0123.732

Extracting all these terms and applying the sum as in Equation 1 will733

lead to a �nal value of Q = 102.963, as in Figure 1D.734

In the additional Supplementary Material we also provide a spreadsheet735

with the calculation of Shannon's H ′ and Rao's Q indices for the four envi-736

ronmental situations reported in Figure 1.737
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Appendix 3 - Sketch of the original NDVI values738

used to calculate Rao's Q739

This graph represents the sketch of NDVI maps from which the Rao's Q
diversity has been derived and provided for free by Rocchini et al. (2018).
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