Poster Open Access

A learned embedding for efficient joint analysis of millions of mass spectra

Bittremieux, Wout; May, Damon H.; Bilmes, Jeffrey; Noble, William Stafford


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Bittremieux, Wout</dc:creator>
  <dc:creator>May, Damon H.</dc:creator>
  <dc:creator>Bilmes, Jeffrey</dc:creator>
  <dc:creator>Noble, William Stafford</dc:creator>
  <dc:date>2019-12-14</dc:date>
  <dc:description>We propose to train a Siamese neural network using peptide–spectrum assignments to embed spectra in a low-dimensional space such that spectra generated by the same peptide are close to one another. We demonstrate that this learned embedding captures latent properties of the mass spectra, clusters related spectra in the low-dimensional space, and identifies the "dark matter" of the human proteome.</dc:description>
  <dc:identifier>https://zenodo.org/record/3576516</dc:identifier>
  <dc:identifier>10.5281/zenodo.3576516</dc:identifier>
  <dc:identifier>oai:zenodo.org:3576516</dc:identifier>
  <dc:relation>doi:10.5281/zenodo.3572596</dc:relation>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:title>A learned embedding for efficient joint analysis of millions of mass  spectra</dc:title>
  <dc:type>info:eu-repo/semantics/conferencePoster</dc:type>
  <dc:type>poster</dc:type>
</oai_dc:dc>
171
255
views
downloads
All versions This version
Views 17167
Downloads 25566
Data volume 330.5 MB85.5 MB
Unique views 15062
Unique downloads 23464

Share

Cite as