There is a newer version of this record available.

Poster Open Access

A learned embedding for efficient joint analysis of millions of mass spectra

Bittremieux, Wout; May, Damon H.; Bilmes, Jeffrey; Noble, William Stafford


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <controlfield tag="005">20200120165709.0</controlfield>
  <controlfield tag="001">3572597</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">13-14 December 2019</subfield>
    <subfield code="g">MLCB</subfield>
    <subfield code="a">Machine Learning in Computational Biology</subfield>
    <subfield code="c">Vancouver, BC, Canada</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Washington, Seattle, WA, USA</subfield>
    <subfield code="a">May, Damon H.</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Washington, Seattle, WA, USA</subfield>
    <subfield code="a">Bilmes, Jeffrey</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Washington, Seattle, WA, USA</subfield>
    <subfield code="a">Noble, William Stafford</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">1295962</subfield>
    <subfield code="z">md5:4279cf5ada02e44292a92c905546acca</subfield>
    <subfield code="u">https://zenodo.org/record/3572597/files/MLCB_2019_GLEAMS.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">https://sites.google.com/cs.washington.edu/mlcb/</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-12-14</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:3572597</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">University of California San Diego, La Jolla, CA, USA</subfield>
    <subfield code="0">(orcid)0000-0002-3105-1359</subfield>
    <subfield code="a">Bittremieux, Wout</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">A learned embedding for efficient joint analysis of millions of mass  spectra</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;We propose to train a Siamese neural network using peptide&amp;ndash;spectrum assignments to embed spectra in a low-dimensional space such that spectra generated by the same peptide are close to one another. We demonstrate that this learned embedding captures latent properties of the mass spectra, clusters related spectra in the low-dimensional space, and identifies the &amp;quot;dark matter&amp;quot; of the human proteome.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.3572596</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.3572597</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">poster</subfield>
  </datafield>
</record>
171
269
views
downloads
All versions This version
Views 171112
Downloads 269207
Data volume 348.6 MB268.3 MB
Unique views 15099
Unique downloads 248193

Share

Cite as