There is a newer version of this record available.

Poster Open Access

A learned embedding for efficient joint analysis of millions of mass spectra

Bittremieux, Wout; May, Damon H.; Bilmes, Jeffrey; Noble, William Stafford


DCAT Export

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#">
  <rdf:Description rdf:about="https://doi.org/10.5281/zenodo.3572597">
    <rdf:type rdf:resource="http://www.w3.org/ns/dcat#Dataset"/>
    <dct:type rdf:resource="http://purl.org/dc/dcmitype/Text"/>
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://doi.org/10.5281/zenodo.3572597</dct:identifier>
    <foaf:page rdf:resource="https://doi.org/10.5281/zenodo.3572597"/>
    <dct:creator>
      <rdf:Description rdf:about="http://orcid.org/0000-0002-3105-1359">
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">0000-0002-3105-1359</dct:identifier>
        <foaf:name>Bittremieux, Wout</foaf:name>
        <foaf:givenName>Wout</foaf:givenName>
        <foaf:familyName>Bittremieux</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>University of California San Diego, La Jolla, CA, USA</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>May, Damon H.</foaf:name>
        <foaf:givenName>Damon H.</foaf:givenName>
        <foaf:familyName>May</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>University of Washington, Seattle, WA, USA</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Bilmes, Jeffrey</foaf:name>
        <foaf:givenName>Jeffrey</foaf:givenName>
        <foaf:familyName>Bilmes</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>University of Washington, Seattle, WA, USA</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Noble, William Stafford</foaf:name>
        <foaf:givenName>William Stafford</foaf:givenName>
        <foaf:familyName>Noble</foaf:familyName>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>University of Washington, Seattle, WA, USA</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:title>A learned embedding for efficient joint analysis of millions of mass spectra</dct:title>
    <dct:publisher>
      <foaf:Agent>
        <foaf:name>Zenodo</foaf:name>
      </foaf:Agent>
    </dct:publisher>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2019</dct:issued>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2019-12-14</dct:issued>
    <owl:sameAs rdf:resource="https://zenodo.org/record/3572597"/>
    <adms:identifier>
      <adms:Identifier>
        <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/3572597</skos:notation>
        <adms:schemeAgency>url</adms:schemeAgency>
      </adms:Identifier>
    </adms:identifier>
    <dct:isVersionOf rdf:resource="https://doi.org/10.5281/zenodo.3572596"/>
    <dct:description>&lt;p&gt;We propose to train a Siamese neural network using peptide&amp;ndash;spectrum assignments to embed spectra in a low-dimensional space such that spectra generated by the same peptide are close to one another. We demonstrate that this learned embedding captures latent properties of the mass spectra, clusters related spectra in the low-dimensional space, and identifies the &amp;quot;dark matter&amp;quot; of the human proteome.&lt;/p&gt;</dct:description>
    <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/>
    <dct:accessRights>
      <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess">
        <rdfs:label>Open Access</rdfs:label>
      </dct:RightsStatement>
    </dct:accessRights>
    <dcat:distribution>
      <dcat:Distribution>
        <dct:license rdf:resource="https://creativecommons.org/licenses/by/4.0/legalcode"/>
        <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.3572597"/>
      </dcat:Distribution>
    </dcat:distribution>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.3572597"/>
        <dcat:byteSize>1295962</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/3572597/files/MLCB_2019_GLEAMS.pdf"/>
        <dcat:mediaType>application/pdf</dcat:mediaType>
      </dcat:Distribution>
    </dcat:distribution>
  </rdf:Description>
</rdf:RDF>
171
269
views
downloads
All versions This version
Views 171112
Downloads 269207
Data volume 348.6 MB268.3 MB
Unique views 15099
Unique downloads 248193

Share

Cite as