Journal article Open Access

Artificial Intelligence and the Public Sector — Applications and Challenges

Wirtz, Bernd W.; Weyerer, Jan C.; Geyer, Carolin


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.3569435</identifier>
  <creators>
    <creator>
      <creatorName>Wirtz, Bernd W.</creatorName>
      <givenName>Bernd W.</givenName>
      <familyName>Wirtz</familyName>
      <affiliation>Hochschule Luzern</affiliation>
    </creator>
    <creator>
      <creatorName>Weyerer, Jan C.</creatorName>
      <givenName>Jan C.</givenName>
      <familyName>Weyerer</familyName>
      <affiliation>Hochschule Luzern</affiliation>
    </creator>
    <creator>
      <creatorName>Geyer, Carolin</creatorName>
      <givenName>Carolin</givenName>
      <familyName>Geyer</familyName>
      <affiliation>Hochschule Luzern</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Artificial Intelligence and the Public Sector — Applications and Challenges</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2018</publicationYear>
  <subjects>
    <subject>Artificial intelligence; public sector; AI applications; AI challenges</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2018-07-24</date>
  </dates>
  <resourceType resourceTypeGeneral="JournalArticle"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3569435</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1080/01900692.2018.1498103</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.3569434</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/lory</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/lory_hslu</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/lory_hslu_w</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode">Creative Commons Attribution Non Commercial No Derivatives 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Advances in artificial intelligence (AI) have attracted great attention from researchers and practitioners and have opened up a broad range of beneficial opportunities for AI usage in the public sector. Against this background, there is an emerging need for a holistic understanding of the range and impact of AI-based applications and associated challenges. However, previous research considers AI applications and challenges only in isolation and fragmentarily. Given the lack of a comprehensive overview of AI-based applications and challenges for the public sector, our conceptual approach analyzes and compiles relevant insights from scientific literature to provide an integrative overview of AI applications and related challenges. Our results suggest 10 AI application areas, describing their value creation and functioning as well as specific public use cases. In addition, we identify four major dimensions of AI challenges. We finally discuss our findings, deriving implications for theory and practice and providing suggestions for future research.&lt;/p&gt;</description>
    <description descriptionType="Other">+ ID der Publikation: hslu_55539 + Art des Beitrages: Wissenschaftliche Medien + Jahrgang: 42 + Sprache: Englisch + Letzte Aktualisierung: 2019-12-10 14:07:56 + Publisher's Statement: This is an Accepted Manuscript of an article published by Taylor &amp;amp; Francis in "International Journal of Public Administration" on 24.07.2018, available online: http://www.tandfonline.com/10.1080/01900692.2018.1498103.</description>
  </descriptions>
</resource>
4,768
2,779
views
downloads
All versions This version
Views 4,7684,767
Downloads 2,7792,779
Data volume 2.4 GB2.4 GB
Unique views 4,4624,462
Unique downloads 2,5782,578

Share

Cite as