Presentation Open Access

CLASH-VLT: Enhancement of (O/H) in z=0.35 RXJ 2248-4431 cluster galaxies

Ciocan, Bianca

Aims. Gas-phase metallicities offer insight into the chemical evolution of galaxies as they reflect the recycling of gas through star formation and galactic inflows and outflows. Environmental effects such as star-formation quenching mechanisms play an important role in shaping the evolution of galaxies. Clusters of galaxies at z < 0.5 are expected to be the sites where environmental effects can be clearly observed with present-day telescopes.

Methods. We explored the Frontier Fields cluster RXJ2248-443 at z = 0.348 with VIMOS/VLT spectroscopy from CLASH-VLT, which covers a central region corresponding to almost 2 virial radii. The fluxes of [OII] λ3727, Hβ, [OIII] λ5007, Hα and [NII] λ6584 emission lines were measured allowing the derivation of (O/H) gas metallicities, star formation rates based on extinction-corrected Hα fluxes, and contamination from active galactic nuclei. We compared our sample of cluster galaxies to a population of field galaxies at similar redshifts.

Results. We use the location of galaxies in projected phase-space to distinguish between cluster and field galaxies. Both populations follow the star-forming sequence in the diagnostic diagrams, which allow the ionising sources in a galaxy to be disentangled, with only a low number of galaxies classified as Seyfert II. Both field and cluster galaxies follow the ’main sequence’ of star-forming galaxies, with no substantial difference observed between the two populations. In the mass–metallicity (MZ) plane, both high-mass field and cluster galaxies show comparable (O/H)s to the local SDSS MZ relation, with an offset of low-mass galaxies (log(M/M⊙) < 9.2) towards higher metallicities. While both the metallicities of "accreted" (R < R500) and "infalling" (R > R500) cluster members are comparable at all masses, the cluster galaxies from the ’mass complete’ bin (which is the intermediate mass bin in this study: 9.2 < log(M/M⊙) < 10.2), show more enhanced metallicities than their field counterparts by a factor of 0.065 dex with a ∼ 1.8σ significance. The intermediate-mass field galaxies are in accordance with the expected (O/H)s from the fundamental metallicity relation, while the cluster members deviate strongly from the model predictions, namely by a factor of ∼ 0.12 dex. The results of this work are in accordance with studies of other clusters at z < 0.5 and favour the scenario in which the hot halo gas of low- and intermediate-mass cluster galaxies is removed due to ram pressure stripping, leading to an increase in their gas-phase metallicity.

Files (3.9 MB)
Name Size
3.9 MB Download
All versions This version
Views 4645
Downloads 6261
Data volume 243.7 MB239.8 MB
Unique views 3736
Unique downloads 5352


Cite as