Journal article Open Access

Revisiting the Max-Log-Map algorithm with SOVA updates rules: new simplifications for high-radix SISO decoders

Le, Vinh Hoang Son; Abdel Nour, Charbel; Boutillon, Emmanuel; Douillard, Catherine


Dublin Core Export

<?xml version='1.0' encoding='utf-8'?>
<oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd">
  <dc:creator>Le, Vinh Hoang Son</dc:creator>
  <dc:creator>Abdel Nour, Charbel</dc:creator>
  <dc:creator>Boutillon, Emmanuel</dc:creator>
  <dc:creator>Douillard, Catherine</dc:creator>
  <dc:date>2019-12-06</dc:date>
  <dc:description>This paper proposes a new soft-input soft-output decoding algorithm particularly suited for low-complexity highradix turbo decoding, called local soft-output Viterbi algorithm (local SOVA). The local SOVA uses the forward and backward state metric recursions just as the conventional Max-Log MAP (MLM) algorithm does, and produces soft outputs using the SOVA update rules. The proposed local SOVA exhibits a lower computational complexity than the MLM algorithm when employed for high-radix decoding in order to increase throughput, while having the same error correction performance even when used in a turbo decoding process. Furthermore, with some simplifications, it offers various trade-offs between error correction performance and computational complexity. Actually, employing the local SOVA algorithm for radix-8 decoding of the LTE turbo code reduces the complexity by 33% without any performance degradation and by 36% with a slight penalty of only 0.05 dB. Moreover, the local SOVA algorithm opens the door for the practical implementation of turbo decoders for radix-16 and higher.</dc:description>
  <dc:identifier>https://zenodo.org/record/3565262</dc:identifier>
  <dc:identifier>10.5281/zenodo.3565262</dc:identifier>
  <dc:identifier>oai:zenodo.org:3565262</dc:identifier>
  <dc:relation>info:eu-repo/grantAgreement/EC/H2020/760150/</dc:relation>
  <dc:relation>hal:hal-02332503</dc:relation>
  <dc:relation>doi:10.5281/zenodo.3565261</dc:relation>
  <dc:relation>url:https://zenodo.org/communities/epic_h2020</dc:relation>
  <dc:rights>info:eu-repo/semantics/openAccess</dc:rights>
  <dc:rights>https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights>
  <dc:source>IEEE Transactions on Communications</dc:source>
  <dc:subject>convolutional codes</dc:subject>
  <dc:subject>oft-input soft-ouput decoding</dc:subject>
  <dc:subject>soft-ouput Viterbi algorithm</dc:subject>
  <dc:subject>high-radix decoding</dc:subject>
  <dc:subject>turbo codes</dc:subject>
  <dc:subject>high throughput</dc:subject>
  <dc:title>Revisiting the Max-Log-Map algorithm with SOVA updates rules: new simplifications for high-radix SISO decoders</dc:title>
  <dc:type>info:eu-repo/semantics/article</dc:type>
  <dc:type>publication-article</dc:type>
</oai_dc:dc>
68
68
views
downloads
All versions This version
Views 6868
Downloads 6868
Data volume 62.7 MB62.7 MB
Unique views 6565
Unique downloads 6363

Share

Cite as