Journal article Open Access

Revisiting the Max-Log-Map algorithm with SOVA updates rules: new simplifications for high-radix SISO decoders

Le, Vinh Hoang Son; Abdel Nour, Charbel; Boutillon, Emmanuel; Douillard, Catherine


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.3565262</identifier>
  <creators>
    <creator>
      <creatorName>Le, Vinh Hoang Son</creatorName>
      <givenName>Vinh Hoang Son</givenName>
      <familyName>Le</familyName>
      <affiliation>IMT Atlantique</affiliation>
    </creator>
    <creator>
      <creatorName>Abdel Nour, Charbel</creatorName>
      <givenName>Charbel</givenName>
      <familyName>Abdel Nour</familyName>
      <affiliation>IMT Atlantique</affiliation>
    </creator>
    <creator>
      <creatorName>Boutillon, Emmanuel</creatorName>
      <givenName>Emmanuel</givenName>
      <familyName>Boutillon</familyName>
      <affiliation>IMT Atlantique</affiliation>
    </creator>
    <creator>
      <creatorName>Douillard, Catherine</creatorName>
      <givenName>Catherine</givenName>
      <familyName>Douillard</familyName>
      <affiliation>IMT Atlantique</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Revisiting the Max-Log-Map algorithm with SOVA updates rules: new simplifications for high-radix SISO decoders</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2019</publicationYear>
  <subjects>
    <subject>convolutional codes</subject>
    <subject>oft-input soft-ouput decoding</subject>
    <subject>soft-ouput Viterbi algorithm</subject>
    <subject>high-radix decoding</subject>
    <subject>turbo codes</subject>
    <subject>high throughput</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2019-12-06</date>
  </dates>
  <resourceType resourceTypeGeneral="JournalArticle"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3565262</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.3565261</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/epic_h2020</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;This paper proposes a new soft-input soft-output&amp;nbsp;decoding algorithm particularly suited for low-complexity highradix&amp;nbsp;turbo decoding, called local soft-output Viterbi algorithm&amp;nbsp;(local SOVA). The local SOVA uses the forward and backward&amp;nbsp;state metric recursions just as the conventional Max-Log MAP (MLM) algorithm does, and produces soft outputs&amp;nbsp;using the SOVA update rules. The proposed local SOVA exhibits&amp;nbsp;a lower computational complexity than the MLM algorithm&amp;nbsp;when employed for high-radix decoding in order to increase&amp;nbsp;throughput, while having the same error correction performance&amp;nbsp;even when used in a turbo decoding process. Furthermore, with&amp;nbsp;some simplifications, it offers various trade-offs between error&amp;nbsp;correction performance and computational complexity. Actually,&amp;nbsp;employing the local SOVA algorithm for radix-8 decoding of the&amp;nbsp;LTE turbo code reduces the complexity by 33% without any&amp;nbsp;performance degradation and by 36% with a slight penalty of&amp;nbsp;only 0.05 dB. Moreover, the local SOVA algorithm opens the door&amp;nbsp;for the practical implementation of turbo decoders for radix-16&amp;nbsp;and higher.&lt;/p&gt;</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/760150/">760150</awardNumber>
      <awardTitle>Enabling Practical Wireless Tb/s Communications with Next Generation Channel Coding</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
68
68
views
downloads
All versions This version
Views 6868
Downloads 6868
Data volume 62.7 MB62.7 MB
Unique views 6565
Unique downloads 6363

Share

Cite as