Conference paper Open Access


Prešić, Dušan; Tasić, Andrej

MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="">
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">srp</subfield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Net position</subfield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Forecast</subfield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Neural Network</subfield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Regional Security Coordinator</subfield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">CGMA process</subfield>
  <controlfield tag="005">20200120150558.0</controlfield>
  <controlfield tag="001">3564523</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">02-06 June 2019</subfield>
    <subfield code="a">34. Session of CIGRE Serbia</subfield>
    <subfield code="c">Vrnjačka banja, Serbia</subfield>
    <subfield code="n">C2</subfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Tasić, Andrej</subfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">510722</subfield>
    <subfield code="z">md5:19fef150a0388641a16f41142d6435d5</subfield>
    <subfield code="u"> NET POZICIJA PRIMENOM NEURALNIH MREŽA.pdf</subfield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2019-12-05</subfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o"></subfield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="a">Prešić, Dušan</subfield>
  <datafield tag="245" ind1=" " ind2=" ">
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">773430</subfield>
    <subfield code="a">CROSS BOrder management of variable renewable energies and storage units enabling a transnational Wholesale market</subfield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u"></subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2"></subfield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;FORECAST OF NET POSITINS USING NEURAL NETWORKS&lt;/p&gt;

&lt;p&gt;Abstract &amp;ndash; Common Grid Model Alignment (CGMA) process is a set of procedures by which the initial estimates of net positions are revised such that the resulting set of net positions on the Pan-European level is balanced. The process is applied for those time horizons for which market schedules of net positions are not available &amp;ndash; from two days ahead up to one year ahead. Beside the task to control CGMA process, Alignment Agents could be nominated by their TSOs regarding net position forecast. It is rather intuitive that initial estimates of net positions are more accurate if the forecast is performed at the regional level.&lt;/p&gt;

&lt;p&gt;This paper describes theoretical foundations of neural networks, as well as its application on net position forecast. Also, based on collected set of input data, calculations for testing period of one year are performed, where hourly values of net positions are forecasted for following biding zones &amp;ndash; Serbia, Bosnia and Herzegovina, Montenegro and Bulgaria. Forecast was performed for time horizon of two days ahead. At the end, several indicators that describe quality of the forecast on the yearly level are shown.&lt;/p&gt;</subfield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.3564522</subfield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.3564523</subfield>
    <subfield code="2">doi</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
All versions This version
Views 5858
Downloads 3030
Data volume 15.3 MB15.3 MB
Unique views 5050
Unique downloads 2525


Cite as