

EuroMix handbook for mixture risk assessment

Johanna Zilliacus, Karolinska Institutet, Sweden EuroMix training material May 2019

Outline

- EuroMix project
- Mixture risk assessment
- EuroMix handbook
 - EuroMix toolbox
 - Problem formulation
 - Hazard assessment
 - Exposure assessment
 - Risk characterisation
 - Tiering approaches
 - Uncertainty analysis
- Conclusions

Exposure to many different substances - EuroMix mixtures

EuroMix methodology and tools

EuroMix handbook

- Methodology and tools for mixture risk assessment
- Examples

EuroMix toolbox

- Web based toolbox for mixture risk assessment
- Data repository

😵 EuroMix

EuroMix handbook for mixture risk assessment

Johanna Zilliacus, Anna Beronius, Annika Hanberg, Karolinska Institutet, Sweden Mirjam Luijten and Jacob van Klaveren, RIVM, The Netherlands Hilko van der Voet, Wageningen University & Research, Biometris, The Netherlands

Welcome to MCRA 9 (beta), the EuroMix toolbox Chemical exposure, hazard and risk assessment

Every day, we are exposed to a mixture of multiple chemicals via food intake, inhalation and dermal contact. The risk to health that may result from this depends on how the effects of different chemicals in the mixture combine, and whether there is any synergism or antagonism between them. The number of different combinations of chemicals in mixtures is infinite and an efficient test strategy for mixtures is lacking. Furthermore, there is a societal need to reduce animal testing, which is the current practice in safety testing of chemicals.

The EuroMix project will deliver a mixture test strategy and test instruments using novel techniques as resently proposed by the Joint Research Centre (JRC) of the European Commission. The tests will result in data needed for refining future risk assessment of mixtures relevant to national food safety authorities, public health institutes, the European Food Safety Authority (EFSA), the European Chemical Agency (ECHA), industry, regulatory bodies and other stakeholders. Ultimately, this will provide information for future risk management decisions on the safety of chemicals in mixtures to be taken by the European Commission and the Codex Alimentarius.

EuroMix handbook and the EuroMix toolbox provide practical support to apply the recent OECD and EFSA guidance documents in mixture risk assessment

This project is funded by the Horizon 2020 Framework Programme of the European Union

Recent international guidance on mixture risk assessment

OECD: Considerations for Assessing the Risks of Combined Exposure to Multiple Chemicals, 2018

EFSA: Guidance on harmonised methodologies for human health, animal health and ecological risk assessment of combined exposure to multiple chemicals, 2019

EuroMix handbook is in line with the recent documents

ADOPTED: 20 February 2019 doi: 10.2903/i.efsa.2019.5634

Guidance on harmonised methodologies for human health, animal health and ecological risk assessment of combined exposure to multiple chemicals

EFSA Scientific Committee,

Simon John More, Anthony Hardy, Vasileios Bampidis, Diane Benford, Susanne Hougaard Bennekou, Claude Bragard, Jos Boesten, Thorhallur Ingi Halldorsson, Antonio F Hernández-Jerez, Michael John Jeger, Helle Katrine Knutsen, Konstantinos Panagiotis Koutsoumanis, Hanspeter Naegeli, Hubert Notebom, Colin Ockleford, Antonia Ricci, Guido Rychen, Josef R Schlatter, Vittorio Silano, Søren Saxmose Nielsen, Dieter Schrenk, Roland Solecki, Dominique Turck, Maged Younes, Emilio Benfenati, Laurence Castle, Nina Cedergreen, Ryszard Laskowski, Jean Charles Leblanc, Andreas Kortenkamp, Ad Ragas, Leo Posthuma, Claus Svendsen, Emanuela Testai, Bruno Dujardin, George EN Kass, Jeao Manini, Maryam Zare Jeddi, Jean-Lou CM Dorne and Christer Hogstrand

Abstract

This Guidance document describes harmonised risk assessment methodologies for combined exposure to multiple chemicals for all relevant areas within FFSA's remit, i.e. human health, animal health and

Risk assessment of mixtures of substances

Whole mixture approach

- Toxicity and exposure data on whole mixture
- Many possible mixtures
- Mixtures change composition

Component-based approach

- Toxicity and exposure data on individual substances in the mixture
- Predict toxicity of mixture

EuroMix is using the component-based approach

Combine toxicities of substances in a mixture

- Dose addition
 - Substances with similar toxicity
 - Substances in mixtures treated as dilutions of each other scaled for the potencies
 - Default, conservative model
- Response addition
 - Toxicologically independent substances
 - Joint probability of independent events
- Interactions
 - Synergistic: 1 + 1 > 2
 - Antagonistic: 1 + 1 < 2
 - Rare, handled case by case
- Dose addition is the default model in the EuroMix tools
- EuroMix mixture experiments to identify possible interactions

Dose addition using relative potency factors (RPFs)

The toxic potency of each substance is combined using dose addition

Exposure of each substance is multiplied with the relative potency factor (RPF)

Potency scaled exposure added to get the potency scaled exposure expressed as index substance equivalents

EuroMix toolbox is based on the RPF methodology

Dose addition using relative potency factors (RPFs)

- Toxicity of index substance (Point of departure (POD), NOAEL/BMD): POD_{index}
- Toxicity of each substance in mixture (Point of departure, NOAEL/BMD): POD₁, POD₂, POD₃, POD₄ ...
- Calculate Relative potency factor (RPF) for each substance: RPF₁ = POD_{index} / POD₁
- Exposure to mixture is scaled based on RPFs
- $Exp_{mix} = Exp_1 \times RPF_1 + Exp_2 \times RPF_2 + \dots$
- Margin of Exposure (MOE) is calculated:
- MOE = POD_{index}/Exp_{mix}
- MOE > assessment factors, combined risk of mixture is usually considered acceptable

Grouping of substances

Group of substances included in the mixture risk assessment Grouping based on e.g.:

- Common exposure source
- Structural similarities
- Toxicological considerations

EuroMix developed methods for grouping based on toxicological considerations EuroMix toolbox can also be used for other types of grouping

Grouping can be done at different levels

- Organ
- Specific effect (adverse outcome)
- Specific mode of action/adverse outcome pathway

Grouping at level of specific effect will probably be most common

EuroMix methodology and tools

- Component-based approach
- Grouping based on toxicological considerations
- Dose addition as default model
- Relative potency factors (RPF) approach
- Probabilistic exposure assessment
- Mainly dietary exposure

Very flexible

- Also applicable for other grouping principles (structure, exposure...)
- Any type of substance
- RPFs based on ADI/TDI, NOAEL/BMD for critical or specific effect or same potency for all substances
- Methodology to handle data poor substances

EuroMix handbook for mixture risk assessment

Practical handbook with templates, Problem formulation instructions and examples: **Problem formulation** • Hazard assessment EuroMix toolbox Exposure Hazard Exposure assessment Tiering assessment assessment Uncertainty **Risk characterisation** • EuroMix handbook and the EuroMix Risk characterisation toolbox provide practical support to apply the OECD and EFSA guidances

EuroMix handbook – sections (1)

- Abbreviations
- Introduction
- EuroMix toolbox
- Problem formulation
- Hazard assessment
 - Identification and assessment of AOP networks
 - Collection and assessment of toxicity data from literature
 - Tiered testing strategies
 - Grouping of substances based on toxicological considerations
 - Relative potency factors
 - Mixture experiments

EuroMix handbook – sections (2)

- Exposure assessment
 - Probabilistic exposure assessment
 - Absence of measured concentration data
 - Non-dietary exposure assessment
- Risk characterisation
 - Dose addition
 - Margin of exposure
 - Selection of main mixtures based on exposure and hazard data
- Tiering approaches
- Uncertainty analysis
- References
- Glossary

EuroMix handbook – sections (3)

Annexes

- Detailed methodology and templates
- Examples
- Training material for EuroMix toolbox

EuroMix handbook – sections (1)

- Abbreviations
- Introduction
- EuroMix toolbox
- Problem formulation
- Hazard assessment
 - Identification and assessment of AOP networks
 - Collection and assessment of toxicity data from literature
 - Tiered testing strategies
 - Grouping of substances based on toxicological considerations
 - Relative potency factors
 - Mixture experiments

EuroMix toolbox

Web-based toolbox for mixture risk assessment Based on previous MCRA tool Upload toxicity and exposure data Calculate exposure levels, relative potency factors, risk levels

🛓 🚍 🗐 😲

Welcome to MCRA 9 (beta), the EuroMix toolbox

Chemical exposure, hazard and risk assessment

Every day, we are exposed to a mixture of multiple chemicals via food intake, inhalation and dermal contact. The risk to health that may result from this depends on how the effects of different chemicals in the mixture combine, and whether there is any synergism or antagonism between them. The number of different combinations of chemicals in mixtures is infinite and an efficient test strategy for mixtures is lacking. Furthermore, there is a societal need to reduce animal testing, which is the current practice in safety testing of chemicals.

The EuroMix project will deliver a mixture test strategy and test instruments using novel techniques as recently proposed by the Joint Research Centre (JRC) of the European Commission. The tests will result in data needed for refining future risk assessment of mixtures relevant to national food safety authorities, public health institutes, the European Food Safety Authority (EFSA), the European Chemical Agency (ECHA), industry, regulatory bodies and other stakeholders. Ultimately, this will provide information for future risk management decisions on the safety of chemicals in mixtures to be taken by the European Commission and the Codex Alimentarius.

EuroMix toolbox-modules

European onion

EuroMix toolbox-modules

<

<

<

<

<

<

<

<

MCRA 9 - EuroMix toolbox Exposure, Hazard & Risk Assessment

\equiv Help / Modules overview

Primary entities
Consumption
Cccurrence
Exposure
Hazard
Risk
In-silico
Kinetic

Modular design

The models and data of the MCRA 9 toolbox are bundled in the modular design of which the diagram is shown below. It shows how the data and models are related to each other. Each module (i.e., each block in the diagram) represents a certain type of data that can be provided as a data source or it may be computed from other data. In the diagram, the purple boxes represent primary entity modules (or scoping modules), the green boxes represent data modules, and the orange boxes represent modules for which the data can be calculated from other data. In the toolbox, each module corresponds with an action that can be configured and for which output may be produced.

EuroMix toolbox user manual

Web-based user manual

- Descriptions of each module
- Settings
- Data formats

A MCRA Documentation
Search docs
CONTENTS:
Colophon
Introduction
About the toolbox
Modules
Examples
References
Appendix

Docs » MCRA documentation

MCRA documentation

Welcome to the MCRA 9 documentation.

Contents:

- Colophon
 - Contributors to MCRA
- Introduction
- About the toolbox
 - Modular design
 - Toolbox data repository
 - Workspaces and actions
- Modules
 - Primary entity modules
 - Consumption modules
 - Occurrence modules
 - Exposure modules
 - Hazard modules
 - In-silico modules
 - Kinetic modules
 - Risk modules
- Examples
- References
- Appendix
 - Munro collection
 - Unit definitions
 - Transformations
 - Gauss-Hermite
 - Concentration models
 - Chronic exposure assessment, daily consumed foods
 - Chronic exposure assessment, episodically consumed foods
 - Unit variability
 - Screening calculation for large Cumulative Assessment Groups
 - Uncertainty analysis

Examples: Relative potency factors

MCRA 9 - EuroMix toolbox / Training Exposure, Hazard & Risk Assessment / Training workspace										
Primary entities	<	General	Data format	Calculation	Uncertainty sources					
Consumption	<	Relative potency factors module								
Occurrence	<	Scope: Substances	Effects							
Exposure	<	Selection inputs: AO	P networks							
Hazard	<	Relative potency facto	rs (RPFs) describe the pote	ncy of substances with	respect to a defined effect, relative to the potency of a					
Risk	<	chosen index substand	chosen index substance. RPFs can be given as data or computed from hazard characterisations.							
In-silico	<									
Kinetic	<									

Calculate relative potency factors (RPF) based on

- NOAELs/BMDs from literature
- In vitro or in vivo dose response data using dose response modelling
- TTC values

Example: Active substances/ Assessment groups

	MCRA 9 - EuroMix toolbox	Training
অশ্ব	Exposure, Hazard & Risk Assessment	workspace

Primary entities	<	General	Data format	Calculation	Uncertainty sources
Consumption	<	Active substa	ances module		
Cccurrence	<	Scope: Effects Su	ostances		
Exposure	<	Selection inputs: A0	P networks Points of depa	rture	
Hazard	<	Active substances are	the substances that may lear	d to a specific health eff	ect (adverse outcome). Active substances can be
Risk	<	either specified direct active substances can	y as data or calculated from (have assessment group mer	QSAR membership moden nberships between 0 an	els or from Molecular docking models. Optionally, d 1.
In-silico	<				
Kinetic	<				

Specify substances included in an assessment group

- List of substances
- Calculate based on in silico models

Example: Combined dietary exposure

MCRA 9 - EuroMix toolbox / = Training / WRelative potency f Exposure, Hazard & Risk Assessment workspace action										
Primary entities	<	General	Calculation	Uncertainty sources	Output settings					
Consumption	<	Dietary expos	sures module							
Occurrence	<	Scope: Populations	Foods Substances	Effects						
Exposure	<	Dietary exposures are	the amounts of substan	ces, expressed per kg bodywei	ght or per individual, to which individuals in a					
Hazard	<	population are exposed exposures and then co	d from their diet per day. ntain exposures for indi	Depending on the exposure ty vidual-days, or they can be long	pe, dietary exposures can be short-term/acute y-term/chronic exposures, in which case they					
Risk	<	represent the average exposure per day over an unspecified longer time period.								
In-silico	<									
Kinetic	<									

Calculate combined dietary exposure and margin of exposure (MOE) using

- Consumption data
- Concentration data
- Relative potency factors (RPF)

Example: Aggregate exposure

MCRA 9 - EuroMix toolbox / Training / Relative potency f...

\equiv Help / Modules overview / Exposure / Exposures

Primary entities	<	General	Calculation	Uncertainty sources	Output settings				
Consumption	<	Exposures mo	dule						
Cccurrence	<	Scope: Populations	Foods Substances	Effects					
Exposure	<	Exposures, possibly fror	n both dietary and non-o	dietary routes of exposure, to v	which individuals in a population are exposed per				
Hazard		day at a chosen target level. This target level may be external exposure (dietary exposure) or internal exposure. Internal exposures may be aggregated from dietary and non-dietary exposures using either absorption factors or kinetic models to							
Risk	<	translate the external ex exposures for individual	posures to internal expo -days, or they can be lor	osures. Exposures can be shor ng-term/chronic exposures, in	rt-term/acute exposures and then contain which case they represent the average exposure per				
In-silico	<	day over an unspecified	longer time period.						
Kinetic	<								

Calculate aggregate exposure and margin of exposure (MOE) using

- Dietary exposure
- Non-dietary exposure
- Relative potency factors (RPF)

EuroMix handbook – sections (1)

- Abbreviations
- Introduction
- EuroMix toolbox
- Problem formulation
- Hazard assessment
 - Identification and assessment of AOP networks
 - Collection and assessment of toxicity data from literature
 - Tiered testing strategies
 - Grouping of substances based on toxicological considerations
 - Relative potency factors
 - Mixture experiments

Problem formulation for mixture risk assessment

- Risk assessment question
- Description of the mixture
- Conceptual model
- Methodological approach
- Analysis plan
- EuroMix developed a template for the problem formulation and analysis plan

Problem formulation element	Description	Recorded information
Risk assessment	Aim of the assessment and/or	
question	specific questions to be addressed.	
Description of	Evidence for common toxicological	
mixture	effect of the mixture components	
	Evidence for co-exposure	
Conceptual model	Regulatory framework or specific regulatory remit	
	Substances	
	Exposure source(s) (e.g. food (specify if possible), drinking water, cosmetics, consumer products (specify), air, soil)	
	Exposure pathway(s) (e.g. oral, dermal, inhalation - specify as needed)	
	Population group (e.g. general population, workers, school children, pregnant women)	
	Population age (infant, toddler, child, teen, adult, elderly)	
	Toxicological effect	
	Level of grouping (common target organ, common adverse outcome (specific effect on the organ level) or common specific mode of action/AOP)	
Methodology	Data availability for toxicity described in general terms	
	Data availability for exposure described in general terms	
	Identification and assessment of AOP networks	
	Grouping of substances based on toxicological effect	
	Collection of toxicity data	
	Description of approach for dealing	

Problem formulation-example

Problem formulation element	Description	Recorded information		
Risk assessment question	Specific questions to be addressed	What is the risk for the adult population in the Netherlands to develop liver steatosis due to combined dietary exposure to pesticide residues in food?		
Description of mixture	Evidence for common toxicological effect of the mixture components	Liver steatosis is identified as an effect in <i>in vivo</i> studies of several pesticides (RIVM, ICPS, ANSES, 2013, 2016)		
	Evidence for co-exposure	Monitoring studies show that European food contains low levels of pesticide residues (EFSA 2018d)		
Conceptual model	Regulatory framework or remit	Not applicable		
	Substances categories	Pesticide residues		
	Exposure source(s) (e.g. food, drinking water, cosmetics, consumer products, air, soil)	Food and drinking water		
	Exposure route(s) (e.g. oral, dermal, inhalation - specify as needed)	Oral		
	Population group (e.g. general population, workers, school children, pregnant women, country)	General population in the Netherlands		
	Population age (infant, toddler, child, teen, adult, elderly)	Adults		
	Toxicological effect	Liver steatosis		
	Level of grouping (common target organ, common effect/adverse outcome or common specific mode of action/AOP)	Common effect/adverse outcome		

Problem formulation-example

Methodology

Data availability for toxicity described in general terms, including the type of data	Regulatory in vivo toxicity studies reported in EFSA draft assessment reports, other assessment reports from international bodies. In vivo studies in scientific papers. Study characteristics, NOAEL, LOAEL, but in most cases not dose-response data. Results from QSAR modelling and in vitro studies.
Data availability for exposure described in general terms, including the type of data	Consumption data from national dietary surveys in Netherlands. Concentration data from European monitoring studies.
Use of AOP networks to support grouping of substances into assessment groups and/or identification of measurable effect/key events	AOP networks for liver steatosis used to support grouping and identify measurable key events
Collection of toxicity data from literature	Literature search to identify toxicity data from reports and scientific papers, selection of studies on included substances and effect included to the AOP network, assessing reliability of scientific papers using SciRAP tool.
Generation of toxicity data	In case relevant and reliable toxicity data is not identified from literature, in silico data and in vitro data for selected KEs in the AOP network is generated.
Grouping of substances based on toxicological considerations	Grouping at the level of common effect, liver steatosis, using in silico, in vitro and in vivo data using two experts. Grouping reported as included/not included.

EuroMix handbook – sections (1)

- Abbreviations
- Introduction
- EuroMix toolbox
- Problem formulation
- Hazard assessment
 - Identification and assessment of AOP networks
 - Collection and assessment of toxicity data from literature
 - Tiered testing strategies
 - Grouping of substances based on toxicological considerations
 - Relative potency factors
 - Mixture experiments

Toxicity data for mixture risk assessment

Toxicity data needed for

- Grouping into assessment groups
- Relative potency factors
- In vivo data
 - Not always available or feasible to produce for all substances
- In vitro data
 - Inform grouping
 - Relative potency factors using in vitro to in vivo extrapolation (IVIVE)
 - Tiered testing strategies and set priorities for in vivo testing
- In silico data
 - Inform grouping
 - Tiered testing strategies and set priorities for in vitro testing
- TTC values
 - Lack of in vitro or in vivo data

Adverse outcome pathway (AOP) networks

- Adverse outcome pathway (AOP) networks can be used as basis for grouping of substances and to identify suitable assays for testing toxicity in vitro
- However, mixture risk assessment in the EuroMix toolbox does not require any information from AOPs, only one effect has to be specified for the assessment.

Identification and assessment of AOP networks

Methodology based on OECD AOP methodology and handbook (2018)

- Identify any existing AOPs
- Develop new AOP starting from Adverse outcome (AO)
- Identify key events (KE) and KE relationships
- Focus on easily measured KEs
- Complete AOP not necessary
- Assess the postulated AOP
- Describe the AOP in the tables for use in EuroMix toolbox

AOP network for liver steatosis

Modules for hazard data

AOP network in EuroMix toolbox

Coding of Effects (key events) and Effect relations (key event relationships) according to AOP wiki

	А	E	F	G	н	1		J		к			
1	idEffect	BiologicalOrganisation	KeyEventProcess	KeyEventObject	KeyEventAction	KeyEventCell	KeyEve	entOrg	gan AOPwiki				
2	PPARalpha-antagonism-liver	Molecular	peroxisome proliferator activated re	e peroxisome proliferator-activated	d decreased	hepatocyte	liver			231,468			
3	LXR-act-liver	Molecular	signaling	oxysterols receptor LXR-alpha AN	[increased	hepatocyte	liver		167,483,14	21			
4	PXR-act-liver	Molecular	signaling	nuclear receptor subfamily 1 grou	u increased	hepatocyte	liver			245,239			
5	PPARgamma-act-liver	Molecular	peroxisome proliferator activated re	e peroxisome proliferator-activated	d increased	hepatocyte	liver			1028			
6	FXR-act-liver	Molecular	signaling		increased	hepatocyte	liver			1304			
7	AhR-act-liver	Molecular	aryl hydrocarbon receptor activity	aryl hydrocarbon receptor	increased	hepatocyte	liver			18			
8	CAR-act-liver	Molecular	signaling	nuclear receptor subfamily 1 grou	u increased	hepatocyte	liver	_		71 715			
9	GR-act-liver	Molecular	glucocorticoid receptor activity	glucocorticoid receptor	increased	hepatocyte	liver		Α	1	3	С	D
10	RAR-act-liver	Molecular	signaling		increased	hepatocyte	liver	1	idAOPN	idUpstreamKeyEve	nt	idDownstreamKeyEvent	AOPwikiKER
11	AOX-decr-liver	Molecular	fatty acid beta-oxidation		decreased	hepatocyte	liver	2	AOPN-steatosis	PPARalpha-antago	nism-liver	AOX-decr-liver	
12	ChREBP-incr-liver	Molecular	signaling	carbohydrate-responsive element	t-increased	hepatocyte	liver	3	AOPN-steatosis	LXR-act-liver		ChREBP-incr-liver	174
13	SREBP-1c-incr-liver	Molecular	SREBP signaling pathway	sterol regulatory element-binding	g increased	hepatocyte	liver	4	AOPN-steatosis	LXR-act-liver		SREBP-1c-incr-liver	177,479
14	FAS-incr-liver	Molecular	fatty acid synthase activity	fatty acid synthase	increased	hepatocyte	liver	5	AOPN-steatosis	LXR-act-liver		FAS-incr-liver	175
15	SCD1-incr-liver	Molecular	gene expression	acyl-CoA desaturase	increased	hepatocyte	liver	6	AOPN-steatosis	LXR-act-liver		SCD1-incr-liver	176
16	CD36-incr-liver	Molecular	gene expression	platelet glycoprotein 4	increased	hepatocyte	liver	7	AOPN-steatosis	LXR-act-liver		CD36-incr-liver	173
17	microsomalbetaox-decr-liver	Molecular				hepatocyte	liver	8	AOPN-steatosis	PXR-act-liver		SCD1-incr-liver	526
18	denovoFA-incr-liver	Cellular	fatty acid biosynthetic process	fatty acid	increased	hepatocyte	liver	9	AOPN-steatosis	PXR-act-liver		CD36-incr-liver	529
19	FAinflux-incr-liver	Cellular	positive regulation of fatty acid tran	s fatty acid	increased	hepatocyte	liver	10	AOPN-steatosis	PXR-act-liver		PPARgamma-act-liver	
20	triglyceride-accum-liver	Cellular	triglyceride biosynthetic	triglyceride	increased	hepatocyte	liver	11	AOPN-steatosis	PPARgamma-act-li	ver	ChBEBP-incr-liver	
21	cytoplasm-displ-liver	Cellular				hepatocyte	liver	12	AOPN-steatosis	PPARgamma-act-li	ver	SREBP-1c-incr-liver	
22	nucleus-distort-liver	Cellular				hepatocyte	liver	13		PPARgamma-act-li	ver	FAS-incr-liver	
23	mitochondrial-disrupt-liver	Cellular	mitochondrion disassembly	mitochondrion	functional change	hepatocyte	liver	14		PPARgamma-act-li	ver	SCD1-incr-liver	
24	ER-stress-liver	Cellular				hepatocyte	liver	15		PPARgamma-act-li	ver	CD36-incr-liver	
25	FattyCells-liver	Tissue					liver	16	AOP N-steatosis	EVP-act-liver	401	ChRERD-incr-liver	
26	Steatosis-liver	Organ		fatty liver	occurence	N/A	liver	17		EXP-act-liver		SPERD-1c-incr-liver	
								10	AOPN-steatosis	EXP act liver			

10	AOPN-steatosis	PXR-act-liver	PPARgamma-act-liver	
11	AOPN-steatosis	PPARgamma-act-liver	ChREBP-incr-liver	
12	AOPN-steatosis	PPARgamma-act-liver	SREBP-1c-incr-liver	
13	AOPN-steatosis	PPARgamma-act-liver	FAS-incr-liver	
14	AOPN-steatosis	PPARgamma-act-liver	SCD1-incr-liver	
15	AOPN-steatosis	PPARgamma-act-liver	CD36-incr-liver	
16	AOPN-steatosis	FXR-act-liver	ChREBP-incr-liver	
17	AOPN-steatosis	FXR-act-liver	SREBP-1c-incr-liver	
18	AOPN-steatosis	FXR-act-liver	FAS-incr-liver	
19	AOPN-steatosis	FXR-act-liver	SCD1-incr-liver	
20	AOPN-steatosis	AhR-act-liver	CD36-incr-liver	495
21	AOPN-steatosis	CAR-act-liver	ChREBP-incr-liver	
22	AOPN-steatosis	CAR-act-liver	SREBP-1c-incr-liver	
23	AOPN-steatosis	CAR-act-liver	FAS-incr-liver	
24	AOPN-steatosis	CAR-act-liver	SCD1-incr-liver	
25	AOPN-steatosis	GR-act-liver	CAR-act-liver	
26	AOPN-steatosis	RAR-act-liver	triglyceride-accum-liver	
27	AOPN-steatosis	AOX-decr-liver	microsomalbetaox-decr-liver	
28	AOPN-steatosis	ChREBP-incr-liver	denovoFA-incr-liver	77,483
29	AOPN-steatosis	ChREBP-incr-liver	SREBP-1c-incr-liver	
30	AOPN-steatosis	SREBP-1c-incr-liver	denovoFA-incr-liver	294
31	AOPN-steatosis	SREBP-1c-incr-liver	FAS-incr-liver	
32	AOPN-steatosis	FAS-incr-liver	denovoFA-incr-liver	133,492,1422
33	AOPN-steatosis	FAS-incr-liver	SCD1-incr-liver	
34	AOPN-steatosis	SCD1-incr-liver	denovoFA-incr-liver	284,1404
35	AOPN-steatosis	CD36-incr-liver	FAinflux-incr-liver	66,501
36	AOPN-steatosis	microsomalbetaox-decr-liver	triglyceride-accum-liver	
37	AOPN-steatosis	denovoFA-incr-liver	triglyceride-accum-liver	110,484
38	AOPN-steatosis	FAinflux-incr-liver	triglyceride-accum-liver	132,504,1658

EuroMix toolbox-modules

European onion
Collection and assessment of toxicity data from literature

Toxicity data for grouping of substances and for calculation of RPFs Methodology based on systematic review and weight of evidence methodology

- Purpose of data collection
- Search for studies from reports, scientific publications
- Select the studies that contain relevant data
- Collect data from the studies
- Assess the data for reliability and relevance

Template for data collection using EuroMix toolbox data format

Tiered testing strategy based on AOP networks

Tiered testing strategy based on AOP networks

Methodology

- Identify KEs that can provide info for grouping or RPFs in the AOP network
- Identify in silico, in vitro and in vivo assays for the KEs
- Assess the
 - relevance of the assays
 - reliability of the assays
 - availability and feasibility in terms of costs and resources
 - information provided for grouping, RPFs, prioritisation for further testing
- Select assays to be included based on the assessments
- Describe the assays (test systems and responses) in the tables for use in EuroMix toolbox
- Template for description of tiered testing strategy

AOP based testing strategy for liver steatosis

Template for tiered testing strategy

KE number	KE name	In silico	Relevance of	Reliability of	Availability	Information
in AOP		model/in vitro	the in silico	the in silico	and	provided by
network		assav for	model/in vitro	model/ <i>in</i>	feasibility of	the <i>in silico</i>
		measuring the	assav	vitro assav	in silico	model/in
		KE	,		model/in	vitro assav for
					vitro assav	the mixture
						risk
						assessment
						(e.g. for
						grouping.
						RPFs and/or
						prioritisation
						for further
						testing)
MIE1						
MIE2						
KE1						
KE2						
KE3						
KE4						
KE5						
KE6						
KE7						
AO						

Modules for hazard data

Assays (test systems and responses in EuroMix toolbox

Coding of test systems, responses and effect representations (connecting response and effect)

	Α	E	F	G	Н	I	J
1	idTestSystem	TestSystemType	Organ	GuidelineMethod	Species	Strain	RouteExposure
2	HepG2	CellLine	liver		human		
3	HepaRG	CellLine	liver		human		
4	HEK293T	CellLine	kidney		human		
5	Rat28Day	InVivo		OECD TG 407	rat	SD	Oral

Rat28Dav-GC-triglyceride-C44

		А	E	F	G	н				
	1	idResponse	idTestSystem	GuidelineMethod	TimePoin	nt ResponseType				
	9	HepG2-RGA-AhR	HepG2		24 h	ContinuousMultiplicative				
1	10	HepG2-RGA-CAR	HepG2		24 h	ContinuousMultiplicative				
2	11	HepG2-RGA-FXR	HepG2		24 h	ContinuousMultiplicative				
3	12	HepG2-RGA-GR	HepG2		24 h	Continuous Multiplicative				
4	13	HepG2-RGA-LXR	HepG2		24 h	ContinuousMultiplicative				
5	14	HepG2-RGA-PPARalpha	HepG2		24 h	ContinuousMultiplicative				
	15	HepG2-RGA-PPARgamma	HepG2		24 h	ContinuousMultiplicative				
	16	HepG2-RGA-PXR	HepG2		24 h	ContinuousMultiplicative				
	17	HepG2-RGA-RARalpha	HepG2		24 h	ContinuousMultiplicative				
	196	HepaRG-HCS-triglyceride-24h	HepaRG		24h	ContinuousMultiplicative				
	197	HepaRG-HCS-triglyceride-72h	HepaRG		72h	ContinuousMultiplicative				
	198	HepaRG-GC-triglyceride-C44	HepaRG		72h	ContinuousMultiplicative				
:	199	HepaRG-GC-triglyceride-C46	HepaRG		72h	ContinuousMultiplicative				
- 2	200	HepaRG-GC-triglyceride-C48	HepaRG		72h	ContinuousMultiplicative				
	201	HepaRG-GC-triglyceride-C50	HepaRG		72h	A	В	С	D	
1	202	HepaRG-GC-triglyceride-C52	HepaRG		72h 1	idEffect	idResponse	BenchMarkResponse	BenchMarkResponseType	F
	203	HepaRG-GC-triglyceride-C54	HepaRG		72h 3	PPARalpha-antagonism-liver	HepG2-RGA-PPARalpha	0,	8 Factor	
	204	HepaRG-GC-triglyceride-C56	HepaRG		72h 7	LXR-act-liver	HepG2-RGA-LXR	0,	8 Factor	
	205	HepaRG-AdipoRed-72h	HepaRG		72h 9	PXR-act-liver	HepG2-RGA-PXR	0,	8 Factor	
1	206	HepaRG-AdipoRed-24h	HepaRG		24h 35	triglyceride-accum-liver	HepaRG-HCS-triglyceride-24h	0,	8 Factor	
1	207	Rat 28 day - Fatty Cells	Rat28day		28d 36	triglyceride-accum-liver	HepaRG-HCS-triglyceride-72h	0,	8 Factor	_
					39	triglyceride-accum-liver	HepaRG-GC-triglyceride-C48	0,	8 Factor	_
					44	triglyceride-accum-liver	HepaRG-AdipoRed-72h	0,	8 Factor	_
					45	triglyceride-accum-liver	HepaRG-AdipoRed-24h	0,	8 Factor	

46 triglyceride-accum-liver

2020 Flamework Frogramme or me European Union

EuroMix toolbox-modules

European Union

Grouping of substances

Group of substances included in the mixture risk assessment Grouping based on e.g.:

- Common exposure source
- Structural similarities
- Toxicological considerations

EuroMix developed methods for grouping based on toxicological considerations EuroMix toolbox can also be used for other types of grouping

Grouping can be done at different levels

- Target organ
- Specific effect (adverse outcome)
- Specific mode of action/AOP

Grouping at level of specific effect will probably be most common

Grouping of substances based on toxicological considerations

Methodology

- Level of grouping (target organ, common effect/AO, common specific mode of action /AOP)
- AOP network
- Substance category
- Collect toxicity data (in silico, in vitro, in vivo, human)
- Organise data in lines of evidence
- Assess data for relevance and reliability
- Decide on group membership using weight of evidence approach
- Report group membership in table for use in EuroMix toolbox (either 0 (not included) or 1 (included) or a value between 0-1 indicating the probability for belonging to the assessment group)

Template for organising data for grouping

Substance	Key event in the AOP network (organised according to MIE, intermediate KEs, AO)	Study type (organised according to <i>in silico, in</i> <i>vitro, in vivo</i> data, human study)	Assay (specific assay used)	Main study result (e.g. positive, negative, BMDL, NOAEL)	Reliability (low, medium, high)	Relevance (low, medium, high)
	MIE	In silico				
		In vitro				
		In vivo				
		Human				
	Each intermediate KE	In silico				
		In vitro				
		In vivo				
		Human				
	AO	In silico				
		In vitro				
		In vivo				
		Human				

EuroMix toolbox-modules

European omon

Dose addition using relative potency factors (RPFs)

- Toxicity of index substance (Point of departure (POD), NOAEL/BMD): POD_{index}
- Toxicity of each substance in mixture (Point of departure, NOAEL/BMD): POD₁, POD₂, POD₃, POD₄ ...
- Calculate Relative potency factor (RPF) for each chemical:
- RPF₁ = POD_{index} / POD₁
- Exposure to mixture is scaled based on RPFs
- $Exp_{mix} = Exp_1 \times RPF_1 + Exp_2 \times RPF_2 + \dots$

Relative potency factors

- Point of departure (PoD) = NOAEL or BMD for each substance in assessment group
- Relative potency factor (RPF) = PoD of index substance/ PoD substance

Substance	PoD	RPF
Index substance	10	10/10 = 1
Substance 1	20	10/20 = 0.5
Substance 2	5	10/ 5 = 2

Sources for Relative potency factors

- RPFs based on
 - ADI/TDI
 - NOAEL/BMD for critical effect
 - NOAEL/BMD for specific effect
 - same RPF for all substances
- Data sources for RPFs
 - RPF data from literature
 - NOAELs from literature
 - Experimental dose response data
 - TTC values when no in vitro or in vivo data is available

Benchmark dose response modelling

Benchmark dose software Proast integrated into EuroMix toolbox

Benchmark dose response modelling

Two scenarios for RPFs using Benchmark dose method:

- Purpose to derive BMDs to calculate RPFs for a group of substances, but the BMDs will not be used as a POD for the risk assessment BMR selected anywhere on dose response curve
- Purpose to derive BMDs to be used as PODs in a risk assessment, e.g. for index substance
 BMR should be chosen to reflect a no effect level, according to the EFSA guidance

Index substance

Criteria for selection of index substance

- confidence that the substance is representative for the specific assessment group
- confidence that the substance causes the effect that is the basis for the risk assessment
- the POD is derived from an *in vivo* study for the effect in focus for the mixture risk assessment
- quality and quantity of toxicity data, resulting in a high confidence in the POD

The index substance does not have to be the most toxic substance (i.e. lowest POD) in the assessment group

Selection of point of departure (POD)

Several PODs available from several studies measuring same or different responses

- Comparability within the assessment group
 - Same response for all substances
- Responses from different KEs in the AOP network
 - Relevance of response, downstream in AOP
- Several PODs for same response
 - Most reliable, conservative, overall POD
- Selection of POD in the EuroMix toolbox
 - Lowest or mean

In vitro to in vivo extrapolation (IVIVE)

- RPFs calculated using in vitro data, at the level of the in vitro system, the cell
- Dietary exposure data is expressed as external exposure, intake
- In vitro to in vivo extrapolation (IVIVE) is needed to use the in vitro RPFs in the dietary exposure assessment
- Two options to extrapolate are implemented in the EuroMix toolbox:
 - Inverse dosimetry using absorption factors
 - Inverse dosimetry using PBK models
- In both options is the in vitro BMD for each substance multiplied by a factor to extrapolate to the external BMD

Imputation of missing point of departure data

POD based on Munro collection of TTC values

- Database of NOAEL values compiled by Munro et al 1996 can be used
- NOAELs can be divided into Cramer classes
- 5th percentile of the NOAELs in each class can be calculated and used as a conservative estimate of NOAEL
- Mean value or uncertainty sampling of all values also possible

POD based on existing PODs in the assessment group

• 5th percentile, mean or uncertainty sampling of all values

EuroMix toolbox-modules

European onion

Mixture testing

Methodology

- Equal potency of substances
- RPFs of individual substances needed
- Several doses of individual substances and binary mixture
- Results analysed using benchmark dose method

Black triangles and red crosses: single substances Green diamonds: mixture

Substance 1	Substance 2						
RPF=1	RPF=5						
Dose in e.g. µ	M						
0							
1							
2							
4							
8							
16							
32							
	0						
	1/5=0.2						
	2/5=0.4						
	4/5=0.8						
	8/5=1.6						
	16/5=3.2						
	32/5=6.4						
0	0						
1/2=0.5	1/5/2=0.1						
2/2=1	2/5/2=0.2						
4/2=2	4/5/2=0.4						
8/2=4	8/5/2=0.8						
16/2=8	16/5/2=1.6						
32/2=16	32/5/2=3.2						

EuroMix handbook – sections (2)

Exposure assessment

- Probabilistic exposure assessment
- Absence of measured concentration data
- Non-dietary exposure assessment
- Risk characterisation
 - Dose addition
 - Margin of exposure
 - Selection of main mixtures based on exposure and hazard data
- Tiering approaches
- Uncertainty analysis
- References
- Glossary

Probabilistic dietary exposure assessment

Probabilistic exposure assessment in EuroMix toolbox is based on previous MCRA tool and in line with EFSA guidance Distribution of exposure and quantification of uncertainty

Acute - effect caused by a short time or single exposure Chronic - effect caused by a longer time exposure

Food consumption data from consumption surveys Concentration data from measurement of levels of substances in food Conversion of food-as-eaten to foods-as-measured Processing factors

EuroMix toolbox-modules

Absence of measured concentration data

- Extrapolation from other foods
- Use of legal limits in food

MCRA 9 - EuroMix toolbox / = Training / Relative potency f...

MCRA 9 - EuroMix toolbox / = Training / = Relative potency f... Exposure, Hazard & Risk Assessment workspace action

Primary entities	<	General Data format
Consumption	<	Concentration limits module
Cccurrence	<	Scope: Foods Substances
Exposure	<	Concentration limits specify (legal) limit values for substance concentrations on foods and are sometimes used as conservative
Hazard	<	values for concentration data. In the framework of pesticides the legal Maximum Residue Limit (MRL) is the best known example.
Risk	<	
In-silico	<	
Kinetic	<	

EuroMix toolbox-modules

Non-dietary exposure assessment

- Model non-dietary exposures in external programmes
- Import non-dietary exposure into EuroMix toolbox
- Combine with dietary exposure

EuroMix toolbox-modules

EuroMix handbook – sections (2)

- Exposure assessment
 - Probabilistic exposure assessment
 - Absence of measured concentration data
 - Non-dietary exposure assessment
- Risk characterisation
 - Dose addition
 - Margin of exposure
 - Selection of main mixtures based on exposure and hazard data
- Tiering approaches
- Uncertainty analysis
- References
- Glossary

Risk characterisation

Dose addition default model

Margin of exposure (MOE)

MOE = POD_{index}/Exp_{mix} MOE > assessment factors, combined risk of mixture is usually considered acceptable

Margin of exposure-example

Action settings

Sub-action results Dietary exposures

- > Exposures by food
- > Exposures by substance
- > Exposures by food and substance
- ✓ Observed individual means
- > Graph total
- > Graph upper tail
- ✓ Percentiles

Reference: Flusilazole, PoD = 530 μ g/kg bw/day

Mean exposure: 0,292 (µg/kg bw/day)

60

Percentage	Exposure (µg/kg bw/day)	Percentage of PoD (%)	Margin of exposure
50.00	0.1249	0.02	4242
90.00	0.7777	0.15	681.5
95.00	1.087	0.21	487.5
99.00	1.914	0.36	277
99.90	3.058	0.58	173.3
99.99	4.423	0.83	119.8

EuroMix toolbox-modules

Selection of main mixtures

- Selection of most common mixtures based on food consumption patterns, concentration data and RPFs
- Statistical method Sparse Nonnegative Matrix Underapproximation (SNMU)
- Can be used for prioritisation for refinement and mixture testing

Characteristi	cs of the exposure	estimat	es (mean,	, median, P	5 and P9	5 in µg∕kg	g bw/day), SNMU	J weights ar	d contribu	tions to tl	ne total ex	posure for	the main n	nixture follo	wing the f	our sce	narios in	each o	country.
	Name compound	RPF	Belgium	(BE)					Czech Repu	Czech Republic (CZ)					Cyprus (CY)					
			SNMU weight	Contrib.	Mean	Median	P5	P95	SNMU weight	Contrib.	Mean	Median	Р5	P95	SNMU weight	Contrib.	Mean	Median	P5	P95
	1356 individuals. Variance: 75.6%				1666 indiv	1666 individuals. Variance: 63.7%.														
Scenario 1	Imazalil	0.13	85%	44%	0.98	0.22	0	3.80	65%	31%	0.41	0.09	0.002	1.1						
(Adults,	Dithiocarbamates	0.53	13%	39%	0.22	0.17	0.02	0.53	25%	39%	0.13	0.09	0.016	0.35						
chronic, merged)	Carbendazim and benomyl	0.2	1%	2%	0.03	0.02	0.002	0.10	2%	4%	0.03	0.02	0.003	0.08						
	Cypermethrin	0.28	1%	4%	0.04	0.03	0.01	0.09	3%	8%	0.05	0.04	0.013	0.12						
	Triadimefon and triadimenol	0.59							2%	4%	0.01	0.002	0	0.06						
	Thiacloprid	0.44							2%	4%	0.01	0.005	0.001	0.06						
	Deltamethrin	0.53							1%	4%	0.01	0.008	0.002	0.04						

1356 individuals. Variance: 95.9%

Table 2

756 individuals. Variance: 99.3%.

Crépet et al 2019. Int J Hyg Environ Health. 222:291-306

EuroMix toolbox-modules

This project is funded by the Horizon 2020 Framework Programme of the European Union

Tiering approches

EuroMix

Conservative approach at low tier

If MOE is sufficiently protective, refinement and higher tiers are not needed

Different tiers are available in the EuroMix methodology and toolbox

Step in assessment	Possibilities for tiering		
Hazard assessment			
Grouping into assessment groups	At lower tier all substances that have a common target organ can be grouped forming a large assessment group and at higher tiers substances can be grouped based on a common effects/adverse outcome (see section 5.4)		
Potency of substances	At lower tiers can the lowest POD for the substances in the group be used for all substances and at higher tiers can substance-specific PODs used (see section 5.5)		
Effect used for RPFs	At lower tiers can the critical effect (lowest POD for substance for any effect) be used and at higher tiers can the specific effect that is the basis for grouping be used (see section 5.5)		
Missing toxicity data	At lower tiers can Munro NOAELs be used and at higher tiers can new toxicity data generated (see section 5.5.6)		
Exposure assessment			
Consumption data	At lower tiers can physiological limits of consumption be used and at higher tiers individual data from consumption surveys (see section 6.1)		
Concentration data	At lower tiers can maximum permitted levels be used and at higher tiers data from representative monitoring studies (see section 6.1)		
Missing concentration data	At lower tiers can maximum permitted levels be used and at higher tiers can new concentration data generated (see section 6.2)		

Uncertainty analysis

Uncertainties related to the different steps the mixture risk assessment

- Identify and describe uncertainties
- Quantify uncertainties if possible

Template for uncertainty analysis

EuroMix toolbox provides many possibilities for uncertainty analysis

Aspect	Identified uncertainties	Analysis of uncertainty (qualitative or quantitative)
Grouping of substances into		
assessment groups		
Choice of toxicity data to derive POD		
Calculation of RPFs		
Extrapolation between in vitro		
and in vivo studies		
Lack of toxicity data		
Consumption data		
Concentration data		
Non-detects, concentration		
measurements below the limit of		
detection		
Lack of concentration data		
Conversion of food-as-eaten to		
food-as-measured and processing		
factors		
Other (non-dietary) routes of		
exposure		
Use of the dose addition model		
Possible interactions (synergism		
or antagonism)		

This project is funded by the Horizon 2020 Framework Programme of the European Union

Conclusions

 EuroMix handbook and EuroMix toolbox provides practical support to perform mixture risk assessment and testing of substances in line with recent OECD and EFSA guidance

EuroMix participants

22 beneficiaries from 16 countries linked to international organisations including WHO, FAO and EFSA. EuroMix is coordinated by RIVM.

