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1. Introduction 3. Feedforward optical neural network

< Nonlinear effects in optical fibers are one of the major limiting factor for optical «* Artificial neural network (ANN) with one hidden layer and linear output units
communications [1]. can approximate arbitrary well any continuous function with sufficient number
| o of neurons in the hidden layer [4]. y
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> |Early stages for optical communications [4] (a) General schematic of an ANN. (b) Building blocks for an ONN.
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* In order to implement any ANN with optical components, two different
{Applications with central processing units are suboptimal in structures are needed [5]:

terms of speed and power efficiency [5]

» optical nonlinear unit (ONU)

 Alternatively, optical neural network can be suitable to mitigate linear and

. o) . » optical interference unit (OIU)
nonlinear optical impairments

d Any N x N unitary matrix can be implemented using optical beam

» Reservoir computing [6, 7] splitters (variable reflectivity) or Mach-Zehnder interferometer [9].

\ » Feedforward optical neural network (ONN) [5]

/ d Any matrix can be factorized using the singular-value decomposition:

2. Reservoir ComPUtin S Generic matrix < A = lllf £ ::: Unitary matrices

*» | Chromatic dispersion (CD) and nonlinearities induced by Kerr effect are time- \Reotangular diagonal matrix with non-negative numbers (optical attenuatorsy
dependent impairments.

Challenging task to overcome in a common machine learning 4 Sim u |ations
architecture where there no memory is considered (typically)

Noise

*+ | Recurrent neural networks mitigates time-dependent impairments with the aid ¢
of recurrent connections 32 GBd X3 filter \ Filter ) filter X3

» Universal approximators [8]
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‘[ Difficulty to train R

** In turn, reservoir computing simplifies the train process by leaving the
hidden layer (reservoir) untrained.
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5. Conclusions

General schematic of a reservoir computing. The blue arrows are the only weights trained. .
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»» Reservoir computing: Leaving the reservoir untrained is a great benefit for

*» By applying a nonlinear transformation, the input space will be mapped to a hardware implementation [10]

higher-dimensional space, resulting in a dimensionality expansion that might
be linear separable. % Forward optical neural network: Speed and power consumption can be

/ significantly improved with an optical implementation of an ANN [5]
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