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❖ Nonlinear effects in optical fibers are one of the major limiting factor for optical

communications [1].

❖ State of art for nonlinear mitigation:

➢ Nonlinearity mitigation through digital signal processing [2]

➢ Optical phase conjugation [1]

➢ Nonlinear frequency division multiplexing [3]

❖ Machine learning

➢ Broad area of application

➢ Very well-know for classification problems

➢ Early stages for optical communications [4]

❖ Alternatively, optical neural network can be suitable to mitigate linear and

nonlinear optical impairments

➢ Reservoir computing [6, 7]

➢ Feedforward optical neural network (ONN) [5]

1. Introduction1. Introduction

High implementation cost

Full knowledge of the optical parameters

Applications with central processing units are suboptimal in 

terms of speed and power efficiency [5]

❖ Reservoir computing: Leaving the reservoir untrained is a great benefit for

hardware implementation [10]

❖ Forward optical neural network: Speed and power consumption can be

significantly improved with an optical implementation of an ANN [5]
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5. Conclusions5. Conclusions

❖ Chromatic dispersion (CD) and nonlinearities induced by Kerr effect are time-

dependent impairments.

❖ Recurrent neural networks mitigates time-dependent impairments with the aid

of recurrent connections

➢ Universal approximators [8]

❖ In turn, reservoir computing simplifies the train process by leaving the

hidden layer (reservoir) untrained.

❖ By applying a nonlinear transformation, the input space will be mapped to a

higher-dimensional space, resulting in a dimensionality expansion that might

be linear separable.

2. Reservoir Computing2. Reservoir Computing

General schematic of a reservoir computing. The blue arrows are the only weights trained.

Challenging task to overcome in a common machine learning 

architecture where there no memory is considered (typically)
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3. Feedforward optical neural network3. Feedforward optical neural network
❖ Artificial neural network (ANN) with one hidden layer and linear output units

can approximate arbitrary well any continuous function with sufficient number

of neurons in the hidden layer [4].

❖ In order to implement any ANN with optical components, two different

structures are needed [5]:

➢ optical nonlinear unit (ONU)

➢ optical interference unit (OIU)

❑ Any N x N unitary matrix can be implemented using optical beam

splitters (variable reflectivity) or Mach-Zehnder interferometer [9].

❑ Any matrix can be factorized using the singular-value decomposition:

Generic matrix Unitary matrices

Rectangular diagonal matrix with non-negative numbers (optical attenuators) 

𝐴 = 𝑈 𝛴 𝑉∗
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4. Simulations4. Simulations
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(a) General schematic of an ANN. (b) Building blocks for an ONN.


