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Soil priming, the change in the microbial decomposition of soil organic carbon
(SOC) in response to fresh carbon (C) inputs, is expected to influence C cycling
globally. However, the global ecological predictors of priming remain elusive. Soil
priming hastwo components: apparent priming, which is due to microbial biomass
turnover, and real priming, which correspondsto the change in soil organic matter
mineralization. Here, we conducted a global survey of soils from 86 locations,
spanning six continents and a wide range of climates, vegetation, microbial
community composition, and soil conditions, and evaluated the apparent soil
priming effect using 3C-glucose labeling for 16 days under potential conditions of
temperature and water content. The magnitude of the positive apparent priming
effect (increasein CO2 release through the accelerated microbial biomass turnover)
was negatively associated with SOC content and microbial respiration rates. Our
statistical modeling explained ~80% of the global variation in apparent soil priming
and suggested that, in more mesic sites associated with higher SOC contents,
apparent soil priming effects are more likely to be negative. In contrast, a single-
input of labile C caused positive apparent priming effects in more arid locations,
associated with low SOC contents. Our results suggest that the SOC content plays
critical role in regulating apparent priming effects globally, with important
implications for the prediction of priming-derived C fluxes under global change
scenarios and for the improvement of global C cycling models.

Soil contains more C than the atmosphere and albowed plant biomass combined (the
top three metres of soil stores more than 2300)Pg.Carbon dioxide (C¢) efflux from
soils is one of Earth’s largest fluxes of C to #tmosphere An important part of such
efflux can result from the turnover of the soil nolsial biomass, which is sensitive to
environmental chang&$and is estimated to contain up to 23.2 Pg C withénfirst top
100 cm of sofl. Soil priming, the change in the microbial decosifion of soil organic
carbon (SOC) in response to fresh carbon (C) inmitskey component of global carbon
C cycling”’. Priming is divided in two components: appareninprg corresponds to
change in the CPevolved from microbial biomass turnover after thput of easy-
available substrates, and the real priming effdutkvcorresponds to the change in the
CO; release from soil organic mattet. These two components of priming are difficult
to distinguish, however, apparent priming tendd¢our shortly after adding readily
availably substrates (first days and weeks), wigitg priming takes longér.

Overall, soil priming is a complex phenomenon thaegulated by multiple mechanisms,
involving abiotic and biotic factors (including, tooot limited to, nutrient availability,
catabolism of different organic matter podis}®!! Soil priming has been postulated to
be a major determinant of the capacity of soilsfunction as sources or sinks of
atmospheric C&2 Consequently, inputs of fresh organic mattehtodoil can cause an
accelerated microbial biomass turnover (appareimipg). Alternatively, a negative
priming due to reduced SOC mineralization or atéed microbial biomass turnover can
occur when labile C is added to $oRecent modelling developments suggest that soil
priming is a strong candidate for inclusion in misde predict global distributions of C
because of the important role of priming in deteing the exchange of C between soils
and the atmospheté®. However, we lack a unifying ecological contexdlam integrative
approach to understanding soil priming effects gligh which would allow us to
determine how the direction of the priming effeaties across different ecosystems and
why this variation exists.
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A growing body of literature has identified nutrdevailability, climate, soil type,
or plant and microbial attributés™® as potentially important drivers of primigror
example, soil texture has been demonstrated to bagortant factor controlling the soil
priming effect, and plants, through the amount eochposition of rhizodeposits, also
play a key role in mediating priming effett§urthermore, climatic factors such as mean
annual temperature are related to soil primingot$té However, in spite of the elevated
amount of C within microbial bioma%sa comprehensive understanding of the drivers of
the apparent priming effect across major biomes guadients at the global scale is
lacking. This knowledge will shed light on how emrimental factors regulate the
microbial biomass turnover and its contribution@@, fluxes under global change
scenario¥?°. Moreover, a better understanding of the ecoldgicedictors of priming
will improve our ability to predict how C£fluxes might shift in response to human and
global change factors that influence the quality gnantity of fresh C inputs to soil and
soil microbial responsés such as afforestatiéh changes in plant C allocation to soil
due to the elevated levels of atmospheric€@he addition of organic amendments to
soil??, nitrogen (N) depositiod, warming* and changes in land #8e

Herein, we conducted a soil survey of 86 locat@er®ss six continents, spanning
multiple climates (tropical, temperate, polar, aitl continental) and ecosystem types
(e.q., forest, grasslands and croplands; Sl Apperidg. S1). We aimed to identify the
major global ecological predictors of the appawaik priming effect. Apparent priming
was determined using a soil incubation of 16 dayspted with'3C-labeled glucose.
Ecological predictors included wide environmentatadients of mean annual
temperature, aridity, vegetation types, plant coseil chemical and physical properties,
and microbial attributes (microbial respirationpimiass and original soil community
composition of bacteria and fungi). Moreover, mfation on the microbial populations
potentially associated with the apparent priminfgeté remains limited. Therefore,
considering microbial attributes, as we have doaeehis critical in evaluating the
environmental factors predicting the apparent prgreffect.

Given that SOC is widely correlated with microbddmas$®, we hypothesized
that the effect size and the direction of the apptpriming effect is regulated by SOC
content, which, in turn, is modulated by the enmmental and ecological context of each
soil?"?8 Thus, we hypothesized that soils with lower S@@tent, including soils from
arid sites with sparse plant cover where micrdbiaass is strongly limited by?€; will
be more responsive to the inputs of labile C, wtety stimulating microbial turnover
and the resulting apparent priming-mediated @@ease (positive priming)Conversely,
we expected that the apparent priming effect wdaddnegative in soils from mesic
regions with greater plant cover and higher litted root inputs to soil where microbial
biomass and soil microbial respiration are lesstdichby the availability of C.

Results and Discussion

Considering that incubation witiC-glucose lasted 16 days, our results mainly reflec
the patterns of the apparent priming efféctt corresponds to changes in £@lease as

a consequence of microbial biomass turnover shaftgr adding fresh-available
substrates®. Our findings indicate that the apparent soil pmgneffect is a globally
ubiquitous phenomenon and provide new insight itstanajor ecological predictors, in
spite the extreme heterogeneity of soils and intabdimitations, as described below.

We found contrasting responses of apparent priragspciated with different globally
distributed ecosystem types. In some soils, a sipglse of labile C accelerated the

4
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turnover of microbial biomass (positive appareninprg). Conversely, the addition of
labile C can lead to reductions in microbial tureon other soils (negative apparent
priming; Fig. 1A-B). For instance, positive apparpnming effects were associated with
shrub- and forb-dominated ecosystems, croplandscaltdforests (Fig. 1A). In some
ecosystems (i.e. croplands, forblands and shrub)attte release of GQlue to positive
apparent priming represented more than 20% ofdbkallmicrobial respiration rate (Figs.
1C-D). Nevertheless, the magnitude of the posdpearent priming effect was low as a
fraction of the total SOC pool (with a maximum d&fet0.13% of the SOC being
mineralized due to priming in cold forests; Sl Apd, Fig. S3) which likely
corresponds to the CQeleased by acceleration of microbial turnover.mentioned
previously, the aim of this study was not to deiaearthe absolute values of priming
effectsper se, but we would have expected even greater prim@sgpaonses in a longer
incubation experimeftthat would probably account for real priming effe or under
field conditions. In contrast, we found negativepa@nt priming effects in grasslands,
and particularly, in soils with very high SOC camte(e.g., volcanic soils from Hawaii)
(Dataset, Supporting Information). These findingsgggest that apparent priming
responses are ecosystem dependent. In other wibklsmportance of the apparent
priming-derived CQin soils with the highest organic C content, saslthose in tropical
ecosystem, is typically lower than in other ecosystems sufipg lower levels of soil
C such as drylands and croplaftd&ig. 1C-D).

Our work is consistent with the results of previstisdies showing that priming occurs
in most soil$**"18 Previous studies have demonstrated that prinsngadulated by
plants and rhizodeposltfs microbial diversity® and warminé’. Here, we decipher the
ecological context that regulates the apparentipgraffect by considering a large range
of soils that varied in their abiotic and bioticfars. Our study suggests that a single pulse
of labile C can cause contrasting responses ofrappg@riming (microbial turnover)
across a wide gradient of soil and ecosystem typlesse results have implications for
the prediction of C fluxes under forecasted glatf@nge and for the improvement of
global C cycling models. Nevertheless, we acknogdgesome limitations of our study.
First, the size of the incubation (1 g of soil) diok sufficiently account for the presence
of macroaggregates. However, it is known that smgbregates are critical for C
sequestratiof?33 and that aggregate disruption through sieving inflnence priming
effect pattern¥. Given their connection with C sequestration,Hartmodels of priming
should also consider the content of aggregatesrslemcubation conditions in our study
differed from those likely experienced in the fidice. different temperature and soil
water content). Consequently, our results shoulthte¥preted as potential patterns of
apparent priming. Even if our experimental incutnatdoes not fully replicaten situ
conditions, such experimental data can be usedvaéua@e assumptions underlying
microbially-explicit soil biogeochemical models,dahelp to identify how microbial
processes and edaphic factors can drive apparemngrat the global scale.

Here, we usestructural equation modeling (SEBIpriori model in SI Appendix,
Fig. S4) to provide integrative information on thajor ecological predictors of apparent
soil priming across a broad range of soil typemfdifferent ecosystems and climates (S
Appendix, Fig. S1; see Material & Methods). SEMpaticularly useful in large-scale
studies, as it allows us to partition causal infices among multiple variables, and to
separate the direct and indirect effects of thelipters included in the mod&! Further,
SEM is capable of accounting for continuous ancegatcal variables. Our model
included important geographical and ecologicaldextsuch as climate (aridity [ARI],
calculated as 1- the Aridity Index, which is negely related to mean annual
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precipitation and mean annual temperature [MATHriables related to soil C (basal
microbial respiration rates and total organic @)| properties (Olsen phosphorus [soil
P], pH, clay + silt and salinity), plant cover, do@nt vegetation type (forests,
shrublands, grasslands and croplands), and impaniarobial features such as microbial
biomass \ia substrate-induced respiration [SIR]), and thetiredaabundance of selected
microbial taxa from the original microbial commuypninh our soils (see Methods). Before
conducting our SEM, we checked for potential moltinearity among the selected
ecological predictors. None of the predictors ideld in our SEM suffer from
multicollinearity ¢ < 0.8), and therefore, multicollinearity issuesew®t expected in this
model. Note that our SEM did not examine an exptitiect effect of aridity and mean
annual temperature (MAT) on either apparent prindngespiration rates (as soils were
incubated under controlled laboratory conditiok&)wever, we included these climatic
factors in our SEM to evaluate the indirect effest<limate on apparent priminga
changes in SOC and plant cover, which we measunddrifield conditions, therefore
providing an ecological context to our results.

In spite of the difficulties for predicting the §priming effect at the global scale,
our SEM approach explained a large portion of tmétion in the apparent priming effect
worldwide (~80%; Fig. 2), and provided strong evice that SOC content (ranging from
0.1 to 38%) and basal microbial respiration weredlly and negatively associated with
apparent priming effects (Figs. 2-4). Importantdyr model goodness-of-fit was strong,
indicating that it represents a causal scenarisistent with the data. Strikingly, soll
microbial biomass (estimated using substrate-induwespiration, SIR), which has been
postulated to be a major ecological predictor afprg effects, was not a significant
predictor of apparent priming in the wide varietysoils tested here (Fig. 2). In other
words, our results suggest that the initial conoéi@OC ultimately regulates the apparent
soil priming effect. Soils with greater C contetiigrefore, less limited by C) are more
likely to exhibit negative or minimal apparent pmmg. Importantly, the negative
relationships between SOC content and appareningigfig. 3A), and between basal
respiration and apparent priming (Fig. 3B) werentaned even after tropical soils (the
soils with the highest SOC content) were removedSontentvs apparent priming
without tropical soilsr = -0.27;p = 0.015; basal respiratiors apparent primingr = -
0.67;p <0.001).

By using amplicon sequencing approaches, we coulthdr investigate
associations between soil microbial community cositpgn and the direction of the
apparent soil priming effect. We found that soizing higher relative abundance of
Basidiomycota and Armatimonadetes had higher positive apparent priming effects.
Conversely, soils with higher relative abundances \errucomicrobia and
Chytridiomycota tended to have lower or negative apparent prineiifigcts (Fig. 3; Sl
Appendix, Table S1). However, in our SEM, only thelative abundance of
Basidiomycota had significant direct effects on the apparenimprg effect after
considering multiple environmental factors simudtansly (Fig. 2-4)Basidiomycota are
dominant and widely-distributed furi§ithat play important roles as decomposers of
plant-derived organic mattéf. Further,Basidiomycota have been reported to become
active through the utilization of glucose and tertlthange their substrate preference to
native SOC compounds, which also include microloietromass as a fundamental
componert® once glucose or other labile C compounds are etisht. This
mechanism might support the positive apparent pignaffects reported here. Further,
we highlight the fact that soil was sieved thro@gmm prior to incubation (see Material
& Methods) and it might be possible thBasidiomycota hyphae were fragmented,

6
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although their DNA can be still present in soiralic DNA*C. The subsequent microbial
decomposition of fungal hyphae fragments duringiticabation could contribute to the
apparent positive priming in soils with greater mtd@ance oBasidiomycota. Moreover,
Basidiomycotal spores and fragments of hyphae (elianof 4-6um vs. sieving at 2000
um) can resist sieving and develop during the intabacontributing to the observed
priming results. We found 1118 phylotypes clasdifsBasidiomycota in our globally
distributedsoils. Among these taxa, we selected the most cam(pr@sent in >10% of
all locations) and conducted Random Forest analgsedescribed in Delgado-Baquerizo
et al. 2016Y to identify the most importarBasidiomycota taxa associated with the
magnitude of the apparent priming effect acrossnem We found that taxa associated
to apparent positive priming effects belonged tilentified Agaricomycetes phylotypes
(Fig. S5).

Previous studies have suggested that the totatobot N and phosphorus (P), as
well as C:N and N:P ratios of the soil organic ma{SOM), play a major role in the
direction of priming®. For instance, Chen et al. 2G1#bund that the interactions between
C and N availability influenced the extent of theypng effects. Moreover, other authors
have found that priming can be more significantNin and P-limited soils because
microbes need to mine the SOM for such elememsiinent poor environmert$®*3 In
contrast, recently novel dual isotope approach&s eind PO tracers) have revealed a
stronger priming effect in soils with larger P camis than in soils with smaller P
contenté*. In our study, which centered on apparent pringffgct, soil N content was
highly correlated with SOC content£ 0.88;p < 0.001), and was therefore not included
in our statistical modeling to avoid multicollingsir Further, available soil P (Olsen P)
content did not correlate significantly with thepapent priming effectr(= -0.27;p =
0.81). In this respect, our study suggests thabsadroad gradients in soil P availability,
available soil P might have a relatively small radedriving the microbial turnover
responsible on the apparent priming effects. Moeeosoil elemental stoichiometry, not
included in oura priori model, was not correlated with the apparent prgniotal N:
available soil Pr = -0.07;p = 0.533 and total organic C: total M:= -0.15;p = 0.181).
Similarly, physical factors such as soil texturéjaet has also been proposed as a factor
regulating soil priming effect§ was not a significant factor across the broadjeanf
soils tested here. Other soil properties such aapéllable soil P content and salinity did
not show any direct effect on the apparent soinprg, but these factors indirectly

affected soil microbes (Fig. 2), and salinity hadlotal negative significant effect on
priming*®4”.

Our SEM provides an ecological context for appapming effects across a
wide range of soils. Soils with greater plant coeeated in more mesic ecosystems had
higher soil C contents and basal microbial resjpinatates that were associated with a
greater likelihood of negative apparent primingeef$ (Figs. 2-4)A priori, the microbial
community in these soils is expected to be adafmegteater C inputs from plants. In
these communities, inputs of fresh substrate coeldsed by microbes to support growth,
assimilating C in microbial biomass and thus limgtithe release of GOto the
atmosphere, explaining the negative apparent pgraffect in these soils. Conversely,
our results suggest that positive apparent prinsnigkely greater in soils under drier
climates (i.e. shrublands) and with land use (em@plands) with low SOC conterts!
(Figs 1C and D, 2, and 3). A previous study usingharbaceous savannah soil, also
revealed that positive priming effects were madkelil to be observed in nutrient-limited
soilst®. The microbial community of these soils is likelyt adapted to the input of fresh-
organic C and might respond with an intense turntwvglucose addition. An additional
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explanation can be the fact that some of these $od. soils under arid or semiarid
climates) are not adapted to the soil water coniglized in the incubation (50% of the
water-holding capacity) and microbial turnover ebbk stimulated in such conditions,
contributing to the release of G These findings have important implications fag th
future of C cycling in drylands, which are preditte expand by up to 23% during this
century*®, and cropping areas, which are expected to iner@esupport a growing human
population.

Together, our work provides a comprehensive petsgeon the ecological
predictors underpinning the direction of appareinhmg effects across a wide range of
soils from different ecosystems and climates. Teiification of the major ecological
predictors of apparent soil priming across suchoad spatial scale and the consistency
of variation for this phenomenon in an ecosystepeddent manner, significantly
improves our understanding of the potential turmoet microbial biomass and its
contribution to CQ fluxes in soil. In agreement with the suggestegadtlyesis, our
findings highlight the fact that the apparent pnmieffect is globally ubiquitous and
controlled by the SOC content. Importantly, we plariming within an ecological
context, showing that apparent soil priming is pesi(accelerated microbial biomass
turnover after glucose input) in soils with highiditly and relative abundance of
Basidiomycota, and low plant cover, SOC content and basal miatebspiration rates.
Further, our results indicate that salinity is arportant negative driver of the apparent
soil priming effect worldwide. These findings hajucidate the predictors of apparent
soil priming in terrestrial ecosystems, with im@mtt implications for the study of C
fluxes under forecasted climate change and fomtipeovement of global models of soil
C dynamics. Further studies should extend the nmést@a understanding of priming,
including more functional aspects of the microbligersity (i.e. through the use of stable
isotope labelling) and the chemical compositiomigfanic matter, not only in terrestrial
ecosystems, but also in aquatic ecosystems whem@ngr effects also have been
demonstrated to be importdfit

Methods
Soil sampling

Soil and vegetation dataere collected between 2016 and 2017 from 86 locatin six
continents (SI Appendix, Fig. S1). These locatiomdude a wide range of globally
distributed solil, vegetation (including grasslarstgublands, forests and croplands) and
climate (tropical, temperate, continental, polast and) types. Sampling was designed to
obtain wide gradients of edaphic characteristicgoss soil formation stages while
constraining climaf® > Mean annual temperature ranged between -1.8 hi6cP2, and
Aridity Index between 0.08 and 4.33. Soils utilizedthis study belong to a global
collaborative network of soil chronosequertégsield surveys were conducted according
to a standardized sampling proto@oln each location, we surveyed a 50 m x 50 m plot.
Three parallel transects of the same length, sp26ead apart were added. The cover of
perennial vegetation was measured in each transéng the line-intercept methdd
Plant cover ranged between 0 and 100%. One cornegogpisoil (five 0-10 cm soil cores)
sample was collected under the dominant ecosystatures across our plots (e.g., trees,
shrubs, grasses, croplands). Following field samgplsoils were sieved (<2 mm) and
frozen at -20 °C.
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Soil chemical and physical analyses

For all soil samples, we measured electrical cotdtic pH, texture, SOC content and
available P (Olsen P) content. Soil properties weetermined using standardized
protocol$3. Soil pH was measured in all the soil samples withH meter, in a 1: 2.5
mass: volume soil and water suspension. Soil tex@rof fine fractions: clay + silt) was
determined according to Kettler et al. (2001 otal N was obtained using a CN analyzer
(LECO CHN®628 Series, LECO Corporation, St JosephUBIA). The content of Olsen
P was determined from bicarbonate extracts usitgyioetric analyses as explained in
Olsen and Sommers (1982)SOC content ranged between 0.1 and 38%, avaiRible
between 0.5 to 72 mg P kgoil, pH between 3.8 to 9.1 and the % of clayltsiried
between 0.3 and 86%, respectively.

Experimental incubation

As sugars are the most abundant organic C compoimdke biosphere and are
presumably linked to priming effeéfs we use a low-molecular weight and highly
available carbohydrate (glucose) as a trigger-nubdedn our priming experimental
incubations. Glucose is the most frequently reléasgar during rhizodepositivrand a
universal substrate for heterotrophic microbese@ithe wide spatial scale of our study,
one sole source of a ubiquitous fresh organic mégtacose) in one conventional dose
was utilized. Glucose mineralization never reach®% (always below 11% of the
added glucose-C, Fig. S2) in any soil likely duethe capacity of organo-mineral
complexes for stabilizing carbon into the biFurther, because plants were not used in
the microcosms given the large variety of ecosysteyar simplified approach allowed
us to remove the natural variation in root exudates the consequent C inputs. Glucose
was applied per soil weight, and not standardizethizrobial biomass or SOC content.
The reason is that our global survey includes sdtls wide ranges in SOC and microbial
biomass, but also in many other factors that cguolage the soil priming effect (i.e. clay
content, available C content, plant and microb@hmunities, etc’)}’18244559 Thys,
unlike in local studies where glucose addition barstandardized, we posit that the most
reasonable approach to evaluate a priming effebieaglobal scale is adding glucose per
unit of soil mass weight.

Two parallel sets of 1 g dry soil samples were gdiainn 20-ml glass vials at 50% of the
water-holding capacity, sealed with a rubber sepaunch pre-incubated for one week at
28 °C in the dark. During this time, microorganiseadapted to the water conditions and
released a pulse of G@ue to the new moisture conditi6hisSimilar incubation times
were utilized in other priming studi€$%2 Subsequently, glass vials were opened and
the atmosphere was refreshed. This standardizaasmecessary in order to homogenize
conditions after the global sampling and storage28fC. After the pre-incubation,
glucose mineralization was assayed by ad#i@eglucose (99 atom% LPC, Cambridge
Isotope Laboratories, Tewksbury, Massachusetts, ditSplved in water to one of the
vial series at a dose of 240 ug of glucose-C pamgyf soil. This dose was considerably
high but in the range of previous priming studied affect the growth and structure of
the microbial communify?4°7 In parallel, the second sample set was subjetotéide
same procedure adding water without glucose; #mspde set was used for measuring
basal microbial respiration rates. A total of 1i@ubations were conducted in this study
(86 soils x two treatments). Then, soils were iratal for 16 days at 28°C in the dark.
Incubations were maintained for more than two wedsdksause previous studies have
revealed that the major part of €@lease from soil tends to occur a few days okaee



405  after substrate additiénLonger incubation time was not used as we waavtod CQ
406  saturation in the vials of C-rich soils. We are eaviat our incubation conditions were
407 outside the range for the mean temperature and w@itéent of soils and, consequently,
408 we estimated the potential apparent priming atdglobdal scale. However, we were
409 interested to know how soil edaphic conditions danfluence the direction of apparent
410 priming effects worldwide, and the legacy effectslonate (which would be modified
411 by incubation conditions) are interpreted as irddireffects in our SEM, as discussed
412  below. After incubation, 4 ml of headspace gas femunh vial were transferred to pre-
413 evacuated glass vials (Labco Limited, Lampeter, é&alJK) and the quantity and
414  isotopic composition of released ©fas then determined. TBEC isotope analysis was
415  performed using a Thermo Scientific GasBench-Preftare gas system coupled to a
416  Delta V Plus IRMS (Thermo Scientific, Bremen, Genyg The final delta values used
417  for the 3C calculations were expressed relative to inteonali standards of V-PDB
418 (Vienna Pee Dee Belemnité’). The isotopic ratio of COwas used to calculate the
419  percentage of CEC derived from the added glucose or from the %oiBiven the short-
420 term nature of the incubation (16 days), the.@&ease was interpreted as derived from
421  the microbial biomass turnover, so called appapemting effect. This was defined as
422  the increase or decrease in the Cdgrived from the microbial biomass turnover
423  following substrate addition. It was calculatedthe total soil respiration following
424  glucose addition minus the amount of C respirethftbe added®C-glucose and from
425  control soil without glucose amendmé&ntEquation (3)). This was expressed as the extra
426 CO-C (ug) released from soil.

427 Priming effect = (total C®- substrate derived GPD- total CQ (1)

428  The first component (total GO- substrate derived Gprefers to the soil amended with
429  substrate and second component (totat)@€fers to the unamended soil. Moreover, our
430  metric of priming effect{g CQ-C g* soil day') was strongly correlated with priming
431 per unit of soil organic Cug CQ-C g soil C day’; p = 0.82;p < 0.001;n = 86).

432
433  Microbial biomass and community composition

434  Microbial biomass was estimated using the subsinaligced respiration approach using
435  Microresp® as described in Campbell et al. (2003Jhe composition of bacterial and
436  fungal communities was measured via amplicon sefugrusing the Illumina MiSeq
437  platform. Ten grams of frozen soil (per sample)avground using a mortar and liquid
438  nitrogen to homogenize soils and obtain a reprasgat soil sample. Soil DNA was
439  extracted using the Powersoil® DNA Isolation Kit@Bio Laboratories, Carlsbad, CA,
440 USA) according to the manufacturer’s instructioAgortion of the bacterial 16S (V3-
441 V4 region) and eukaryotic 18S (V9 region) rRNA gengas sequenced using the
442  341F/805R and Euk1391f/EukBr primer sets, respelstiBioinformatic processing was
443  performed using a combination of QIINIEUSEARCH? and UNOISE®. The relative
444  abundance of microbial phyla was obtained fromeleglyses. 72/86 samples for fungi
445 and 82/86 samples for bacteria were successfuliyeseced and used for statistical
446  analyses below. These samples include soils froolimlates and ecosystem types.

447

448  Satistical analyses

449  PERMANOVA
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We first tested for significant differences in ping effect across major ecosystem types
using one-way non-parametric Permutational ANalggiyariance (PERMANOVA). In
these PERMANOVA, each plot is considered a statibtieplicate. Put simply, in our
study we are using Earth as a grid across whicareeollecting data from different plots
or sites (replicates) from different ecosystem sypé¢aving more than one sample within
each plot would have been considered pseudo-réplicas our question was related to
comparing the priming effect across different estay types globally (e.qg., tropical vs.
temperate forests) rather than comparing primirfgcefacross plots within a given
ecosystem type (e.g., two temperate forests). Eyrtfradient designs, as we have used,
are powerful tools for detecting patterns in ecaalgresponses to continuous and
interacting environmental drivers as they genew@liperform replicated designs in terms
of prediction success of respondes

Sructural Equation Modeling

We then used structural equation modeling (SEMY evaluate the direct and indirect
relationships between abiotic (pH, salinity, SOQiteat, soil P content and texture),
biotic (dominant vegetation types, plant coverpnegion rate, SIR-microbial biomass,
and relative abundance of bacterial and fungalghghd climatic (MAT and aridity)
environmental factors on apparent priming effectelobon expectations of anpriori
model (SI Appendix, Fig. S4). Due to the large nembf potential microbial taxa
predicting soil priming, prior to conducting thel8Ewe first used Spearman correlations
to identify a negative or positive correlation beem the apparent priming and the relative
abundance of microbial phyla. Only four taxa wegaigicantly correlated with apparent
soil priming @rmatimonadetes, Verrucomicrobia, Basidiomycota and Chytridiomycota;

Sl Appendix, Table S1); thus only these taxa weotuded in our SEM. Of these taxa,
we found a significant effect of Basidiomycota anBur SEM was conducted with the
69 soil samples including matching information fmacterial and fungal community
composition. Climate factors (MAT and aridity) aised here as proxies of legacy effects,
as incubations for priming effects are done unadertrolled laboratory conditions, with
similar and constant soil water and temperaturesacall soil§’. Because of this, we did
not include the direct effect of climate on the agmt priming effects and respiration
rates. However, we were interested in assessingdirect effects of climate on priming
via changes in SOC content and plant cover, aimingdwide an ecological context to
our findings. After attaining a satisfactory modielwe introduced composite variables
into our model. The use of composite variables da¢slter the underlying SEM model,
but collapses the effects of multiple conceptuadiiated variables into a single composite
effect, aiding interpretation of model results. |Sdiand basal soil microbial respiration
were included as a composite variable, because¢hegthey determine the amount of
initial SOC content which is respired by microb@mmunities. Since some of the
variables introduced were not normally distributiae, probability that a path coefficient
differs from zero was tested using bootstrap t&siststrapping tests do not in such cases
assume that the data match a particular theorelistbution.

Data availability

The complete dataset associated with this paper bees deposited in figshare:
https://figshare.com/s/56430026ba793775983f (1C1608.figshare.7054265).
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Figure 1. Apparent soil priming effects across globally distributed ecosystems. (A)
Priming effect across major biomes. Different letten this panel indicate significant
differences among ecosystenps=(0.007). (B) Histogram showing data distributian f
the apparent priming effect. (C) Percentage of €@m apparent primings. basal soil
microbial respiration ratep (= 0.50). (D) Histogram showing data distributiom the
apparent primingss. soil respiration rates. Number of samples in betckh = 86).
Ecosystems are defined using major vegetation tgmesthe Koppen classification.
Number of sites is indicated in parentheses. Hraps are standard error of the mean.
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Figure 2. Ecological predictors of the apparent soil priming effect. Structural
Equation Model (SEM) describing the effects of npldt ecological predictors on the
apparent soil priming effect (n= 69). Numbers a€eljgdo arrows are indicative of the
effect size ) < 0.05) of the relationship.?Rlenotes the proportion of variance explained.
Climate, soil properties and vegetation predictare included in our models as
independent observable variables; however, we giteem in the same box in the model
for graphical simplicity. Soil carbon (C) assocaiteariables (soil microbial respiration
and soil organic C content) are included as a caitpoariable in our model (hexagon).
F = forest. G = Grasslands. SHR = Shrublands. C€&y + silt. EC = Salinity. Resp =
Basal microbial soil respiration. Basidio = % B&sidiomycota. Verruco = % of
Verrucomicrobia. Armati = % ofArmatimonadetes. Chytridio = % ofChytridiomycota.
Pcov = % of plant cover. ARI = Aridity (i.e., 1-ARILocations with a higher aridity also
support lower water availability). MAT = Mean anht@mperature. There was a non-
significant deviation of the data from the mod@ €3.97, df = 2p = 0.14; RMSEAp =
0.18).
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Figure 4. Standardized total effects (STE) from the Structural Equation Model
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