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Abstract

A novel methodology is presented to introduce Periodic Boundary Condi-
tions (PBC) on periodic Representative Volume Elements (RVE) in Finite
Element (FE) solvers based on dynamic explicit time integration. This im-
plementation aims at overcoming the difficulties of the explicit FE method
in dealing with standard PBC. The proposed approach is based on the im-
plementation of a user-defined element, named a Periodic Boundary Condi-
tion Element (PBCE), that enforces the periodicity between periodic nodes
through a spring-mass-dashpot system. The methodology is demonstrated
in the multiscale simulation of composite materials. Two showcases are pre-
sented: one at the scale of computational micromechanics, and another one
at the level of computational mesomechanics. The first case demonstrates
that the proposed PBCE allows the homogenization of composite ply prop-
erties through the explicit FE method with increased efficiency and similar
reliability with respect to the equivalent implicit simulations with traditional
PBC. The second case demonstrates that the PBCE coupled with Periodic
Laminate Elements (PLE) can effectively be applied to the computational
homogenization of elastic and strength properties of entire laminates taking
into account highly nonlinear effects. Both cases motivate the application of
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the methodology in multiscale virtual testing in support of the building-block
certification of composite materials.

Keywords: Explicit FEM, Periodic Boundary Conditions (PBC),
Homogenization, Multiscale computational mechanics, Composite materials

1. Introduction1

With the advances in computing power and the growing costs associ-2

ated to physical experiments for certification of composites, multiscale virtual3

testing based on the Finite Element Method (FEM) has become a popular4

approach in the characterization and evaluation of composite materials and5

structures [1]. This approach often requires homogenization techniques, as6

the physical response of composite materials at the macroscale is a direct con-7

sequence of their microstructural features and architecture. Moreover, the8

behaviour of the composite might depend on microstructural features other9

than the properties and topology of the microconstituents (fibres, matrix and10

interfaces), such as fibre volume fraction, fibre size and shape distributions,11

distance between neighbouring fibres, voids, among others. Computational12

homogenization techniques are ideal tools to take all these effects into ac-13

count.14

The elastic, plastic and fracture responses of laminated Fibre Reinforced15

Polymers (FRP) at the macroscale can be computed efficiently by following16

a stepwise bottom-up multiscale approach [1–3]. In the first step, computa-17

tional micromechanics is employed to predict the homogenized behaviour of18

a unidirectional fibre-reinforced yarn or ply, in 2D (e.g. [4–7]) or 3D spaces19

(e.g. [8–11]), with input properties resulting from the experimental char-20

acterization of the composite microconstituents: fibre [12], matrix [7] and21

fibre/matrix interface [13]. In the case of ply architectures with higher com-22

plexity than unidirectional fibres, such as in textile composites, a subsequent23

homogenization step needs to be performed based on the previously com-24

puted behaviour of the unidirectional yarns, the response of the bulk resin25

matrix and on the topology of the Representative Unit Cell (RUC) of the26

fabric (e.g. [14–17]). From the orthotropic ply behaviour and lamina orien-27

tations within a ply stacking, computational mesomechanics can be used to28

predict the behaviour of the laminate (e.g. [18–20]). At this step the response29

of the discrete ply interfaces also needs to be taken into account because lam-30

inated FRP are prone to delamination. The homogenized behaviour of the31
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laminate can then be applied to the design of composite laminated structures32

by employing computational structural mechanics [1–3]. Some of these mod-33

elling techniques impose severe non-linearities to the respective numerical34

problems which become intractable by implicit integration FE solvers due35

to convergence difficulties. In such cases, explicit numerical schemes become36

the only viable alternative to achieve meaningful numerical predictions.37

In the framework of multiscale modelling, the use of Representative Vol-38

ume Elements (RVE) has become a very popular numerical approach for the39

purpose of homogenization in highly heterogeneous materials. This tech-40

nique allows the reproduction of uniform stress states in a domain and thus,41

the prediction of homogenized thermo-mechanical properties as elasticity and42

strength. Apart from the selection of the RVE size, which must be sufficient43

to capture the stress-strain response and failure mechanisms of the compos-44

ite, the applied boundary conditions play a key role on the assessment of the45

homogenized properties. There are three common types of boundary con-46

ditions: uniform boundary displacements or isostrain (Hill-Reuss), uniform47

boundary tractions or isostress (Hill-Voigt) and Periodic Boundary Condi-48

tions (PBC). The use of PBC on the RVE boundaries implies that smaller49

analysis domains are sufficient to obtain reliable homogenized properties [21].50

Due to this reason, PBCs have been extensively employed in computational51

homogenization.52

The classical approach to introduce PBC in a RVE is by means of the53

definition of strong relations (equations) between periodic nodes, hence im-54

posing constraints to their allowed displacements. In its essence, this method55

requires the mesh to be periodic, in such a way that every node on each56

RVE boundary has its homologous node on the respective opposite (peri-57

odic) boundary, although enhancements, based on polynomial interpolation58

[22, 23] and Lagrange multipliers [24], have been proposed in order to avoid59

the need of matching the mesh topology on opposite RVE boundaries. Either60

way, the traditional PBC approach is well appropriate for implicit integration61

numerical schemes but the fulfilment of the periodicity equations in dynamic62

explicit time integration solvers tends to lead to spurious displacement oscil-63

lations that compromise the numerical solution. To overcome this issue, this64

work proposes the imposition of PBC in explicit FE solvers through special-65

purpose elements, named Periodic Boundary Condition Elements (PBCE).66

The paper demonstrates that this approach is specially well suited for mul-67

tiscale computational analyses of composite materials and constitutes an en-68

abling technology for multiscale computational homogenization in composite69
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materials.70

The formulation of the PBCE for general 3D FE problems and its im-71

plementation as a user-defined element in Abaqus/Explicit [25] are detailed72

in section 2. The reliability, applicability and efficiency of the approach are73

then demonstrated in the framework of multiscale computational analysis74

of composites, in section 3. First, the PBCE method in combination with75

RVE is applied to micromechanical homogenization of unidirectional FRP76

yarns or plies. The results are evaluated through the correlation of numeri-77

cal results obtained with traditional PBC and new PBCE. Then, PBCE in78

combination with Representative Laminate Elements (RLE) are proposed for79

the homogenization of laminate behaviour through computational mesome-80

chanics. Finally, the concluding remarks are drawn in section 4.81

2. Periodic Boundary Condition Element82

2.1. Definition83

Periodic Boundary Conditions (PBC) guarantee the periodicity of the84

mechanical fields and ensure the continuity between neighbouring Represen-85

tative Volume Elements (RVE), as in a jigsaw puzzle. The PBC are set by86

enforcing that the difference between displacement vectors, u, of opposite87

sides of an RVE of lengths `1 × `2 × `3 is equal to a relative displacement,88

Ui. In mathematical form:89

ϕ1(x2, x3,U1) = (u(0, x2, x3)− u(`1, x2, x3))−U1 = 0
ϕ2(x1, x3,U2) = (u(x1, 0, x3)− u(x1, `2, x3))−U2 = 0
ϕ3(x1, x2,U3) = (u(x1, x2, 0)− u(x1, x2, `3))−U3 = 0

(1)

wherein ϕi=1,3 are the three constraint equations relating relative displace-90

ments Ui=1,3 of pairs of opposite nodes in the RVE sides, and xi=1,3 are91

degrees of freedom (DOFs) in three dimensional space. The constraints can92

be introduced in the discrete potential energy associated to the weak form93

of the elastic equilibrium problem:94

Πh(uh) =
1

2

∫
Ωh

σ(uh)·∇uhdΩ−
∫

Ωh

uh ·f dΩ−
∫
∂Ωh

uh ·h d(∂Ω)+
3∑

i=1

Ψi(u
h)

(2)
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wherein σ(uh) and ∇uh stand for the stress and strain tensors associated to95

the discrete displacement field uh, and f and h are the body forces and con-96

tact stresses at the volume and boundary of the solid, respectively. Finally,97

Ψi(u
h) represents the potential energy associated to the introduction of the98

periodicity constraints. In the case of explicit time integration, equation 299

can be generalized to the dynamic problem by introducing the inertia and100

damping forces in the system.101

The constraint equations (1) can be rearranged to obtain a more appro-102

priate form for the FEM assembly procedure. For the easy imposition of103

PBC, the global reference nodes (master nodes) Mi and M ′
i are defined such104

that Ui = uMi
− uM ′

i
, as represented in Figure 1a.105
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Figure 1: a) Four nodes involved in the PBC of displacement of nodes P − P ′:
M2,M

′
2, P, P

′. b) Example FE model with 3 × 3 × 3 nodes illustrating the coupling
between periodic nodes.

The relative motion between a local point P belonging to a given plane of106

the RVE and point P ′ on the parallel plane displaced `i (length of the RVE107

in the direction i) can be expressed as a 4-point condition (Figure 1a),108

ϕi(uP ,uP ′ ,uMi
,uM ′

i
) = (uP−uP ′)−Ui = (uP−uP ′)−(uMi

−uM ′
i
) = 0 (3)

for all pair of opposite nodes P and P ′, being OP ′ = OP + `iei wherein ei109

is the unit vector perpendicular to the RVE planes. In this regard, uMi
and110

uM ′
i

are selected to reproduce periodic homogeneous strain states through111
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Table 1: Boundary conditions applied through the master nodes (M ′1,M
′
2,M

′
3), where ’0’

represents a fixed DOF, ’−’ is a free DOF and δ a prescribed displacement.

Load case uM ′
1

=
−→
U1 uM ′

2
=
−→
U2 uM ′

3
=
−→
U3

Uniaxial (1-direction) (δ, 0, 0) (0,−, 0) (0, 0,−)
Uniaxial (2-direction) (−, 0, 0) (0, δ, 0) (0, 0,−)
Pure shear (12-direction) (−, δ, 0) (0,−, 0) (0, 0,−)

the model. For simplicity, the displacement of the reference nodes, Mi, is112

set to zero to prevent rigid body motion of the whole model whereas the113

displacement of the master nodes, M ′
i , depends on the loading case selected114

(see Table 1). Combined loading can be applied by superposition of boundary115

conditions for uniaxial and pure shear loading cases.116

Due to compatibility reasons, periodic boundary conditions cannot be117

applied to every pair of periodic nodes. This is the case for node pairs118

(P, P ′) that belong to more than one PBC (edges and vertices). As a general119

rule, a P ′ node can only be part of one PBC. This is illustrated in Figure 1b120

for an example model with 3× 3× 3 nodes in which each group of P ′ nodes121

is shown in a different color (red, blue and green), each color corresponding122

to the coupling with a reference master node (M ′
1,M

′
2,M

′
3, respectively).123

The linear constraint [26] between the displacements of these four points124

in equation 3 can be defined as:125

ϕe(uP ,uP ′ ,uM ,uM ′) = Lue =

=

 1 0 0 −1 0 0 −1 0 0 1 0 0
0 1 0 0 −1 0 0 −1 0 0 1 0
0 0 1 0 0 −1 0 0 −1 0 0 1





u1
P

u2
P

u3
P

u1
P ′

u2
P ′

u3
P ′

u1
M

u2
M

u3
M

u1
M ′

u2
M ′

u3
M ′



= 0 (4)
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where uiP corresponds to the i-component of the displacement vector of node126

P .127

Instead of satisfying the constraint exactly, a penalty approach is used128

such that the deviation from the exact fulfilment of the constraint penalizes129

the potential energy. The value selected for the penalty stiffness, k, should130

be high enough to make periodicity as accurate as possible. If the constraint131

ϕe = 0 is verified, the element-wise elastic potential is minimum,132

Ψe(ue) =
1

2
k ϕe(ue) ·ϕe(ue) =

1

2
k Lue · Lue (5)

and the internal forces necessary to obtain a good approximation of the133

constraints are calculated from the gradient of the potential, according to:134 (
∂Ψe

∂ue

)
= k LTLue = Fe

k (6)

This approach can be seen as a generalized spring network between nodes135

belonging to the boundaries, pulling the system back to the periodic con-136

straint. Hence, its natural implementation in an explicit time integration137

FE solver such as Abaqus/Explicit [25] is by means of 4-node user-defined138

non-volumetric elements, henceforth named Periodic Boundary Condition139

Elements (PBCE), defined by means of a subroutine VUEL. The application140

of these user element implies the replacement of each set of PBC constraint141

equations (1) by a PBCE. Each PBCE enforces a local “penalty” constraint142

between opposite nodes P , P ′, and master nodes Mi, M
′
i (Figure 1a) similar143

to the classic PBC (equations 1). The points {Mi,M
′
i} are assembled to144

be the same for each pair of opposite surfaces so that the globally-imposed145

displacement difference Ui, is the same for all pairs of opposite nodes P , P ′.146

The global constraint Ψi(u
h) and the external forces Fext appear natu-147

rally when the elements associated with the nodes belonging to the domain148

boundaries are assembled, and the displacements/forces are imposed to the149

master nodes. The constraint is satisfied approximately for each pair of oppo-150

site nodes. With the PBCE, the displacements of nodes Mi are constrained,151

whereas the displacements of nodes M ′
i are imposed (Figure 1a).152

It should be noted that either relative displacements Ui or forces Fi can be153

externally imposed through the master nodes. For instance, recalling Table 1,154

a uniaxial test in the direction 3 is imposed by means of U3 = (0, 0, ε̄3`3)155

and U1 = (u1, 0, 0) and U2 = (0, u2, 0), being ε̄3 the average strain imposed156
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to the RVE along direction 3. In this case, u1 and u2 stand for the output157

lateral Poisson contraction resulting from the FEM computation.158

As it is presented, this method originates undamped oscillations in dy-159

namic analyses, as verified in preliminary simulations. Hence, damping mech-160

anisms are implemented in the PBCE while preventing that its valid motions161

are affected. Viscous Rayleigh damping gives a force proportional to the neg-162

ative rate of change of Lu̇e and parallel to the elastic force:163

Fe
c = c LTLu̇e (7)

where c is a damping coefficient. For low loading rates, for which the effect of164

inertial forces is negligible, an additional mass m can be added to the system165

in the same way:166

Fe
m = m LTLüe (8)

Finally, the resulting equation of motion of the element, taking into account167

the external forces, becomes168

0 = Fe
k + Fe

c + Fe
m − Fe

ext = LTL(kue + cu̇e +müe)− Fe
ext (9)

2.2. Stiffness, damping and mass parameters169

The selection of the parameters k, c and m of the PBCE must be done170

according to a compromise between the accuracy of the results and the com-171

putational cost. For instance, high values of k would increase the accuracy172

of the periodic condition, nevertheless, the critical stable time increment of173

the PBCE (∆tPBCE
stab ) would be reduced, increasing the number of increments174

to complete the simulation.175

Based on equation 9, the Courant-Friedrichs-Lewy (CFL) condition [27]176

can be analysed for the derived PBCE to obtain the stable time increment177

of the user element as,178

∆tPBCE
stab ≈ 2

ω
·
(√

1 + ξ2 − ξ
)

(10)

where the angular frequency of the user element is ω = 2
√
k/m, and ξ =179

c/
√
km.180

Two examples on how to select these parameters are described in Sec-181

tions 3.1 and 3.2.182
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3. Multiscale computational applications183

The traditional approach to implement PBC is by means of constraint184

equations (*EQUATION in Abaqus [25]). This method has strong founda-185

tions for implicit solvers based on static equilibrium, but exhibits several186

drawbacks when explicit dynamic time integration (i.e. central differences)187

is used. It is observed that the relationships between master and slave dis-188

placements is translated into equations that introduce intense high-frequency189

oscillations in the system. It has not been possible to identify the exact cause190

for this behaviour which is possibly related to implementation difficulties in191

explicit algorithms. Related difficulties might be in the origin of the lim-192

itation in the number of supported constraint equations 1. Moreover, the193

method with traditional PBC is computationally expensive. The Periodic194

Boundary Condition Element (PBCE) approach proposed in this paper is195

more efficient under similar conditions and it is not limited in the number of196

periodic DOF’s.197

In the following, the PBCE method is applied and validated under two198

computational homogenization scenarios in composite materials: microme-199

chanical and mesomechanical homogenization.200

3.1. Micromechanical homogenization201

Micromechanical homogenization in composite materials is generally used202

to compute the elastic and strength properties of an orthotropic lamina and203

predict ply failure envelopes, e.g. [5–7, 11]. The behaviour of the ply trans-204

verse to the fibres direction can be analysed with two-dimensional or quasi-2D205

RVE, as shown in Figure 2. Herewith, a 2D version of the PBCE presented206

above is used in the computation of transverse tensile properties of the uni-207

directional Carbon-Fibre Reinforced Polymer (CFRP) material AS4/8552.208

The microstructure of the RVE of an unidirectional composite is idealized209

as a dispersion of parallel and circular fibres randomly distributed in the210

polymer matrix. A minimum of 50 fibres is generally enough to capture211

adequately the essential features of the microstructure of the material while212

maintaining reasonable computing efforts, as demonstrated by González and213

LLorca [28]. Synthetic fibre distributions statistically equivalent to the real214

1In Abaqus, this limit has been increased from version to version, being around 90000
for v6.14 [25]

9



Figure 2: The composite mechanical behaviour is determined by solving numerically the
boundary value problem for a RVE of the composite which is much larger than the het-
erogeneities in the microstructure.

ones are generated with a modified Random Sequential Adsorption (RSA)215

algorithm [8].216

The RVE is discretized in Abaqus/Explicit [25] in the following way: the217

matrix and the fibres are modelled with 4-node fully integrated quadrilat-218

eral isoparametric elements under the assumption of plane strain (CPE4),219

while the fibre-matrix interface debonding is simulated with 4-node cohesive220

isoparametric elements (COH2D4) inserted at the interfaces between fibres221

and matrix. Perfect and homogeneous contact between fibres and matrix is222

assumed. The carbon fibres are assumed to behave as linear elastic trans-223

versely isotropic solids. The matrix is modelled as an isotropic elastic-plastic224

solid according to a modified Drucker-Prager plasticity yield surface includ-225

ing damage [25, 29]. The fibre-matrix interface behaviour follows a mixed-226

mode bilinear traction-separation law [25]. Detailed information about the227

constitutive models and material properties can be found in [4, 7].228

A reference analysis was carried out with Abaqus/Standard [25] within229

the framework of the finite deformations theory. In addition, explicit dy-230

namic analyses employing the default Abaqus/Explicit [25] PBC scheme,231

by means of constraint equations, were also run for comparison with the232

developed PBCE approach. In each analysis, an initial thermo-mechanical233

loading step simulates the cooling-down process from curing to service tem-234

peratures, given the significant influence of the respective residual stresses235
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on the homogenized properties. This stage is followed by the application of236

mechanical load up to failure. Two typical load-cases were analysed herein:237

uniaxial transverse tension and transverse compression.238

A careful selection of the mechanical parameters of the PBCE was done239

in advance to maximize the accuracy of the simulation without penalizing its240

computational cost. To this end, m was selected as the average nodal mass241

of the model (m = 3.73 ·10−7 g) such that no remarkable mass concentration242

would take place along the boundaries. In order for the PBCE to provide a243

good approximation of the periodicity condition, k must be high compared244

to the overall stiffness of the model (on each direction),245

k ·Ne � kmodel (11)

where the stiffness of the model in the transverse direction is kmodel = E2 ·246

A/L ≈ 104 N/m, and Ne is the number of user elements in the transverse247

direction (Ne ≈ 100). A value of k = 105 N/m was found to be enough248

for the current analyses. Based on preliminary simulations, a value of c =249

0.001 N s/m for the damping coefficient was sufficient to remove spurious250

oscillations. This combination of parameters did not penalize the stable251

time increment of the simulation, i.e. ∆tstab < ∆tPBCE
stab (see equation 10).252

Load was applied by means of a velocity-controlled profile following a253

smooth step to minimize shock waves that would introduce high inertial254

effects. For both load cases, the steady-state loading rate selected was 5 ·255

10−4 m/s with a peak acceleration of 0.6 m/s2.256

The stress-strain curves resulting of the different analyses, as well as stress257

fields for the tensile cases and strain fields for the compression cases, are258

shown in Figure 3. For transverse tension, it is observed that the mechan-259

ical fields are equivalent between implicit and explicit analyses, and that260

ultimate failure is triggered by the same cracking mechanisms at similar ap-261

plied stress level (≈ 51.5 MPa) in both schemes. However, the explicit FE262

results using constraint equations (Explicit-PBC) are highly oscillatory and263

under-predict the transverse tensile strength of the material. For transverse264

compression, the match between implicit and explicit analyses with PBCE is265

again remarkable in terms of strain fields and load at failure (≈ 205 MPa).266

The explicit analysis with constraint equations also shows an oscillatory re-267

sponse although the transverse compression strength obtained matches the268

one predicted by the two other schemes.269

A summary of the computational cost associated to the solution of the270
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Figure 3: Comparison of the results obtained with Periodic Boundary Conditions Ele-
ments (PBCE) in Explicit against the Periodic Boundary Conditions (PBC) in Standard
and Explicit by means of constraint equations. Transverse tension (left column) and com-
pression (middle column) load cases are shown. The resulting stress-strain curves for each
load case (tension and compression) for the three different schemes are shown in the right
column.

tensile loading case by each of the numerical schemes is given in Table 2.271

For a fair comparison, all calculations were performed in a single CPU272

(Intel® Xeon® E5-2680 processor). In overview, the time required by the273

implicit solver (Abaqus/Standard) to complete the simulation is remark-274

ably higher than for the explicit approaches. Nevertheless, the computation275
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time required to reach the peak load point (value in parenthesis) is consider-276

ably lower for the implicit solver which takes advantage of the initial quasi-277

linearity of the problem by allowing large load increments at this stage. The278

explicit schemes are remarkably advantageous in the softening regime where279

the simulation becomes highly non-linear due the appearance of plastic defor-280

mation and damage. By comparing both explicit approaches, it is observed281

that the use of PBCE results in a ≈ 35% reduction in computation time with282

respect to the traditional PBC scheme. The amount of memory required by283

the solver is also slightly reduced with the PBCE method (≈ 10%).284

Table 2: Comparison of the computational efficiency achieved with the PBCE scheme
compared to the traditional solving schemes for the tensile load case (see Figure 3). In
parenthesis, the computation time required to reach the peak load point.

Scheme Computation time [s] Memory required [Mb]
Standard - PBC 1766 (186) 32.0
Explicit - PBCE 800 (592) 16.9
Explicit - PBC 1055 (781) 19.3

3.2. Mesomechanical homogenization285

The use of PBC at the mesoscale allows for the definition of a Represen-286

tative Laminate Element (RLE), in essence a RVE of a laminate [18, 19], as287

represented in Figure 4. The use of PBC aims at introducing an uniform far-288

field stress to a small portion of the laminated material structure, assuming289

that the RLE behaviour is statistically representative of the whole specimen290

[30]. In this way, this approach allows the computation of the homogenized291

elastic and strength properties for a given laminate configuration in all or-292

thotropic directions, and the prediction of a laminate failure envelope.293

The traditional way to determine laminate properties and qualify com-294

posite materials for structural applications is done through costly and time295

consuming experimental testing following carefully devised test standards.296

In the recent years, numerical simulation arose as a promising alternative to-297

wards efficient material certification by virtual testing, with the added advan-298

tage that a much larger range of configurations can be considered [1, 2, 31].299

The standard test methods can be modelled with high-fidelity and accu-300

rate predictions of laminate behaviour and relevant properties achieved, as301

demonstrated by Falcó et al. [20]. Both physical and virtual approaches aim302
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Figure 4: Representative Laminate Element (RLE).

at reproducing a macroscopically homogeneous stress state such that the re-303

sultant behaviour can be considered intrinsic to the laminate configuration.304

However, because of the finite width of the coupons and the three dimensional305

stress states at their edges [32, 33], the behaviour is significantly affected by306

edge cracking and delamination. By means of the RLE approach proposed307

in this paper, edge effects are removed from the boundaries of the numerical308

model and replaced by PBC, so that the analyses address only the material309

response. Moreover, the computational requirements are remarkably reduced310

since the RLE can be much smaller than the virtual coupon.311

To capture the relevant mechanisms of laminate behaviour, the RLE do-312

main is discretized in plies and ply interfaces. While interlaminar damage is313

assumed to occur in the form of delaminations along predefined and discrete314

crack planes, ply damage might occur in the form of fibre breakage, fibre315

pull-out, kink-banding and matrix cracking at any location within the plies.316

Hence, the appropriate description of the ply interface behaviour is achieved317

by means of cohesive and frictional relations between discrete fracture planes318

whilst the ply deformation mechanisms can be adequately tackled by means319

of a Continuum Damage Model (CDM) [20]. This modelling approach im-320

poses severe instabilities, such as snap-back due to brittle cracking, to the321

numerical problem which typically result in convergence issues in implicit322

solvers. Therefore, the explicit numerical integration of the RLE, coupled323

with the PBCE proposed in this paper, constitutes the enabler of the com-324

putational homogenization of laminate behaviour.325

For the purpose of demonstration, the In-Plane Shear (IPS) test on an326

AS4-8552 laminate is addressed herein. This experiment is used to charac-327
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terize the in-plane shear response of a ±45 laminate, and is defined according328

to the ASTM D3518 test standard [34]. It consists of a rectangular coupon329

of [±45]s configuration, 25 mm in width by up to 250 mm in length, loaded330

under quasi-static tension up to failure. To define an appropriate RLE, it is331

sufficient to consider an area of 10 x 10 mm2 of the laminate to capture a332

representative number of intralaminar cracks for the element width employed333

(0.2 mm), as shown in Figure 5. Since the laminate at any point is statis-334

tically representative of the laminated structure, the only constraint on the335

dimensions of the RLE is that it should be much larger than the characteris-336

tic dimensions of the physical mechanisms that are to be simulated. In this337

case, the relevant phenomena are matrix cracking and delamination, which338

are associated to fracture process zones of the order of less than a millimetre339

[35]. Moreover, due to the out-of-plane symmetry of the [±45]s configuration,340

only two plies (±45) need to be modelled with properly imposed symmetry341

boundary conditions.342

����

��
��

����

��
��

��	��	

��	

��	

Figure 5: Illustrations of the In-Plane Shear (IPS) test (top) and the corresponding RLE
(bottom) with applied PBCs and loads.

The laminate modelling approach follows the work of Falcó et al. [20]. Ac-343

cordingly, the ply interface response is modelled by means of a general mixed-344

mode cohesive zone method coupled with frictional behaviour. The coupled345

cohesive-frictional approach is adopted to include the possible effects of ply346

friction during and after delamination, and is implemented in the kinematics347

of surface contact interaction algorithms available in Abaqus/Explicit [25].348

The unidirectional FRP plies are modelled by means of a thermodynamically-349
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consistent CDM that takes into account the relevant ply deformation mech-350

anisms [20]. The nonlinear elastic-plastic shear behaviour of the material351

is modelled by a Ramberg-Osgood law [36]. The possibility of elastic un-352

loading is tackled by means of a general elastic predictor - plastic corrector353

algorithm. The relevant ply and interface properties required by these models354

are given in [20]. Similar properties for the same material (different batches)355

are available in [37]. A regularized meshing approach is used, with material-356

alignment and directional biasing, as described in [20]. Each ply (0.184 mm357

in thickness) is discretized with a single through-the-thickness plane of reg-358

ular 8-noded hexahedral isoparametric elements of 0.6 x 0.2 x 0.184 mm3
359

in volume with reduced integration (C3D8R), except around the RLE edges360

wherein tetrahedral elements (C3D6R) are used.361

As in the computational micromechanics case above, a judicious selection362

of the mechanical parameters of the PBCE was performed to ensure both363

the accuracy and the efficiency of the simulation. To this end, the PBCE364

damping and stiffness coefficients were set to c = 0.1 N s/mm and k =365

2 · 105 N/mm, respectively. The nodal mass of the PBCE was taken as the366

average nodal mass of the RLE.367

Quasi-static tensile displacements were imposed to the RLE, as repre-368

sented in Figure 5, until collapse was produced by the accumulation of matrix369

cracks and delamination between the +45o and -45o layers. For the purpose370

of qualitative correlation (Figure 6), the simulated accumulation of matrix371

cracks is compared with equivalent experimental results of an IPS test on a372

similar carbon/epoxy material which have been obtained by means of X-ray373

computed tomography (XCT) [38, 39].374

In the experiments (Figure 6, left), cracks develop similarly in the +45o
375

and -45o layers, starting from the edges of the specimen, following directions376

parallel to the fibres due to the kinematic constraints imposed by the mi-377

crostructure. The crack density is always higher around the edges than in378

the specimen central sections and it increases with the applied load until379

saturation. Delamination also grows from the specimen edges. Finally, the380

accumulation of matrix cracking and delamination leads to instability and381

specimen collapse. The simulations on the smaller size RLE (Figure 6, right)382

capture this damage pattern while discarding the undesirable effects caused383

by the edges. It should be mentioned that, whilst the XCT is able to capture384

critical and sub-critical damage mechanisms, the simulations only predict the385

first, i.e. cracks completely developed through the thickness of the plies. Al-386

though the CDM does not contain information of the kinematic constraints387
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Symmetry plane

-45o cracks

+45o cracks

Figure 6: Qualitative correlation between experimentally-obtained (left) and simulated
(right) development of matrix cracking in a plain stress [±45]s laminate (experimental
results adapted from [38]). Note: both experiments and simulations performed in similar
carbon/epoxy [±45]s coupons, although not exactly the same material.

imposed by the ply microstructure (the shear parallel and perpendicular to388

the fibre are represented with the same deformation tensor), this effect is ob-389

tained with the regularized meshing with material-alignment and directional390

biasing [20], leading to the correct simulation of crack directions. Hence, the391

RLE can be considered approximately representative of the central sections392

of the finite-width IPS coupon.393

The results of the simulation in terms of the stress-strain behaviour are394

shown in Figure 7. The response of the RLE is nonlinear in a very similar395

way to the Ramberg-Osgood law [36] implemented at the constitutive level396

to describe the pure shear stress vs. shear strain relation of the ply, although397

not exactly since the IPS test configuration does not create pure shear on the398

ply but a mixed-mode loading situation, with a small fraction of transverse399

tension. For this same reason, the ultimate IPS load, IPSS = 99.7 MPa, also400

diverges from the ply shear strength, SL = 110.4 MPa [37]. This demonstrates401

that this property is not adequately characterized by the IPS experiment [34],402

and a better alternative for that purpose is the Short Beam test standard403

ASTM D2344M [40] that measures the Interlaminar Shear Strength (ILSS)404

in a laminate.405

Through-the-thickness matrix cracking, as shown in Figure 6, initiates at406

the highest load and deformation stages, rapidly growing and interacting with407

interface delamination to produce the collapse of the RLE. The simulated408

cracking is, however, not influenced by coupon edge effects as in the IPS409

17



0

20

40

60

80

100

120

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Sh
e

ar
 S

tr
es

s 
(M

Pa
)

Shear Strain (-)

IPS RLE simulation

Ply behaviour:

SL = 110.4 MPa

12

1

121
L

G

G

S

 








  
      

Figure 7: Stress-strain curves for the plain tension test. The appearance of the relevant
damage events are marked with arrows in the figure. Ply in-plane shear strength, SL

= 110.4 MPa , measured by means of the Short Beam Test [37]. Numerically-obtained
laminate In-Plane Shear Strength, IPSS = 99.7 MPa (at γpl = 0.04%). Experimentally-
obtained [±45]s specimen IPSS = 91.6 MPa (SD = 2.51 MPa) corresponding to γpl = 0.05
[37]. Ply in-plane shear modulus G12 = 4.9 GPa. Ramberg-Osgood exponential, η = 1.9.

experiment. As result, the numerically obtained In-Plane Shear Strength,410

IPSS = 99.7 MPa is higher than the average value obtained experimentally411

with the IPS experiment, IPSS = 91.56 MPa [37].412

The numerically-obtained unloading-reloading behaviour of the RLE is413

also represented in Figure 7 to demonstrate that the PBCE, and the consti-414

tutive ply model, work well under these circumstances.415

4. Conclusion416

Special-purpose Periodic Boundary Condition Elements (PBCE) were417

proposed to impose Periodic Boundary Conditions (PBC) to general Rep-418

resentative Volume Elements (RVE) in FE solvers based on dynamic explicit419

time integration. This approach solves the issue of spurious oscillations re-420

sulting from the application of the traditional PBC approach in the explicit421

FEM, overcomes limitations in the number of constraint relations and al-422

lows gains in computational efficiency. The PBCE formulation was imple-423

mented by means of a user-defined element through a VUEL subroutine in424

Abaqus/Explicit [25]. The reliability and applicability of the approach were425
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demonstrated in the framework of multiscale computational analysis of com-426

posites. First, the PBCE method in combination with RVE were applied to427

micromechanical homogenization of unidirectional FRP yarns or plies. The428

correlation between traditional PBC in implicit integration and PBCE in the429

explicit FEM was remarkable. Then, PBCE in combination with Representa-430

tive Laminate Elements (RLE) were proposed and validated for the purpose431

of homogenization of laminate behaviour through computational mesome-432

chanics to expedite the virtual testing of composite materials and eliminate433

undesired effects of coupon-based experiments.434
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