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Abstract

The mechanical properties of woven composites can be predicted by using a
multiscale modelling approach. The starting point to its application is the mi-
croscale (the level of fibres, matrix and interfaces), that allows the computation
of the homogenised behaviour of the yarn. The aim of this work was to predict
the yarn-level behaviour of a thermoplastic-based woven composite in order to
allow the formulation of a representative constitutive model that can be used
to predict ply properties at the mesoscale. To accomplish this purpose, an in-
situ characterisation of the microconstituents was carried out. This served to
generate inputs for three different representative volume element (RVE) models
that allowed predicting the yarn longitudinal, transverse and shear responses.
These mechanical characteristics allowed the determination of homogenised yarn
constitutive behaviour which was found to be characterised by significant non-
linearity until failure, specially in transverse and shear directions.

Keywords: woven composites, thermoplastics, multiscale modelling,
computational micromechanics

1. Introduction

Advanced fibre-reinforced polymer (FRP) structures are manufactured us-
ing composite laminates, which in turn consist of composite layers stacked with
different fibre orientations. Thus, within such architectures, various entities,
such as fibre, layer or laminate/component, among others, are distinguished
and each of them is associated to a specific length scale. These scales are char-
acterised dimensionally by fibre diameter, layer thickness and laminate thick-
ness, respectively, and are arranged in a hierarchical sequence (Fig. 1). When
these advanced composite systems are subjected to mechanical loads, different
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deformation and failure mechanisms within the three length scales occur simul-
taneously. Faced with this fact, it is possible to design a bottom-up multiscale
simulation scheme that takes advantage of the natural separation of the length
scales between the aforementioned entities [1–3]. This method is based on vir-
tually modelling the identifiable characteristic entities within a given scale and
simulating their combined (or homogenised) response as if it were a single entity.
Then, this response is taken to formulate a constitutive model that is assigned
to the entity that it represents at a larger length scale. Such multiscale mod-
elling strategy has proven to be a powerful tool that minimises experimental
work, thus simplifying design tasks and greatly reducing associated costs. All
this has been widely recognised in the context of the aeronautical industry, and
others, where achieving maximum efficiency is a constant challenge [2, 3].

In the present study, the characteristic entities, identified within the mi-
croscale, are fibre, matrix and interface, from which it is intended to predict the
response of a higher dimensional hierarchy entity, a yarn, which belongs to the
scale of the ply (mesoscale). One way to obtain the corresponding homogenised
response is through the use of so-called representative volume element (RVE)
models. Quite a number of authors have demonstrated the accuracy of RVE
models to predict stiffness, strength and fracture mechanisms of unidirectional
(UD) FRPs under different loading conditions [4–8]. Moreover, RVE models
have served to determine the complete failure surfaces of such materials [9–13].
By contrast, the volume of work that deals with the prediction of mechanical
properties of woven composites based on a multiscale modelling approach is
relatively small [14, 15].

This article constitutes the first part of a two-part work that addresses
the study of the mechanical behaviour of a glass fibre-reinforced polypropy-
lene (GFPP) woven composite on the basis of a bottom-up multiscale mod-
elling strategy. The aim of this first part is to estimate the fundamental yarn
properties of the above composite in order to formulate, in the second part of
the work, a constitutive model that can be used to predict woven ply proper-
ties at the mesoscale. To accomplish this purpose, an in-situ microconstituent
characterisation campaign was carried out. This served to feed three different
representative volume element (RVE) models that allowed predicting tensile
and compression behaviours, both longitudinal and transverse, as well as shear
behaviour. Through them, the mechanical properties necessary to formulate a
yarn constitutive model capable of reproducing its non-linear behaviour until
failure were obtained.

[Figure 1 about here.]

2. Characterisation of microconstituents

The material studied herein is a GFPP twill 2/2 woven composite, which is
commercialised under the trade name of Tepex R© (dynalite 104-RG600(x)/47%)
[16]. The properties necessary to model the matrix and interface behaviours
were obtained by in-situ characterisation tests: nanoindentation for the matrix
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and fibre push-in for the interface. To do so, samples were taken from a 1.5 mm
thick 3-ply Tepex R© laminate. These were set in resin leaving a free surface
perpendicular to the yarns for in-situ characterisation tests. These tests were
carried out with a Hysitron TI 950 TriboIndenter R© nanoindenter. The exper-
imental procedures are briefly described in this section (additional details are
provided by Rodŕıguez et al. [17, 18]).

Taking advantage of the availability of the samples used to characterise the
microconstituents, a microstructure study was carried out to determine the
fibre diameter, df = 15.24± 2.02 µm (Gaussian distribution), and the local
volume fraction, V l

f = 68%. As for the mechanical properties of the fibre, an
elastic modulus, Ef , of 76 GPa and a Poisson’s ratio, νf , of 0.22 were assumed;
the strength properties were taken from experimental results available in the
literature [19].

2.1. Matrix

Matrix nanoindentation was used to determine the elastic modulus, Em, and
the matrix compressive yield stress, σc

y0. This technique is based on the analysis
of the mechanical response of the matrix when puncturing its surface. For this,
it is usual to use an instrumented Berkovich tip. The use of such a tool causes
a type of deformation in the material that leads to the appearance of either
pile-up or the sink-in phenomena, depending on the material behaviour [18]. In
this regard, it is essential to identify the phenomenon that results when a given
nanoindentation test is performed to obtain matrix properties, as this allows to
choose the appropriate procedure to obtain the properties. Oliver and Pharr
established a methodology that provides satisfactory results when the material
surrounding the tip sinks in [20]. Rodŕıguez et al. proposed a more complete
and versatile alternative [18], validated for both sink-in and pile-up cases, which
was used in the present research.

Based on the foregoing, five indentations at a strain rate of 0.1 s−1 and a limit
penetration depth of 2 µm were made. Finally, the average values for the elastic
modulus, Em, and the matrix compressive yields stress, σc

y0, were obtained as
2.39± 0.18 GPa and 54.41± 2.66 MPa, respectively.

2.2. Fibre/matrix interface

The push-in test method was used to determine the fibre/matrix interface
shear strength (ISS). By using an instrumented flat-tip nanoindenter, this tech-
nique basically consists in pushing a single fibre into the matrix until the occur-
rence of interface debonding [17]. This phenomenon is identified with the loss of
linearity in the load-displacement curve recorded during the test. The push-in
test only provides the value of the ISS in the longitudinal direction of the fibre,
τ0l . The corresponding normal strength, σ0

n, was assumed to be equal to 2/3τ0l ,
based on the experimental results obtained by Ogihara and Koyanagi [21]. The
ISS in the transverse direction of the fibre, τ0t , was considered equal to that
of the longitudinal one (τ0t = τ0l = τ0). Such an assumption was considered
reasonable since both matrix and fibres are isotropic materials.
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In the present study, the nanoindenter was equipped with a 15 µm diameter
flat tip. The indentations were made onto fibres whose diameter was slightly
larger than that of the flat tip. Following the methodology proposed by Molina-
Aldaregúıa et al. [22] to guarantee reproducibility, the tests were conducted on
regions of highly packaged fibres following an hexagonal symmetry configura-
tion, which was the most common format within the polymer matrix. A total
of 10 push-in tests were performed. The average value of τ0l was obtained as
22 MPa.

3. Computational micromechanics

Three different RVE models were developed to determine the fundamental
yarn properties. Each of them was able to predict the mechanical response
under specific solicitations. Thus, RVE–1 reproduced both transverse tension
and compression behaviours, as well as in-plane shear response, while RVE–2
and RVE–3 modelled the longitudinal (fibre direction) tensile and compression
behaviours, respectively. Table 1 collects the yarn properties to be determined
with each of the RVE models. The model responses were numerically predicted
based on an implicit integration scheme with Abaqus/Standard [23].

[Table 1 about here.]

3.1. Modelling features and constitutive equations

The matrix and fibres were meshed with 8-node linear brick elements (C3D8)
and 6-node linear wedge elements (C3D6), respectively. In both cases, the el-
ements were isoparametric and fully integrated. The interface debonding phe-
nomenon, in the case of RVE–1, was simulated by means of 8-node brick cohesive
elements (COH3D8), while in the cases of RVE–2 and RVE–3 cohesive surfaces
were used. It was assumed that there was no imperfection or defect at the in-
terface. Periodic boundary conditions (PBCs) were applied to the three pairs of
opposite sides of all three models, thus ensuring the periodicity of the physical
fields [24].

The matrix was modelled as an isotropic linear elastic-plastic material gov-
erned by the linear (original) Drucker-Prager yield criterion [25]. The so-called
original model assumes the non-dependence on the third deviatoric stress in-
variant and an associated plastic flow [23]. Based on literature-available data
[26], an internal friction angle of 13.71◦ was adopted. The corresponding yield
surface evolved according to an exponential-type hardening function defined on
the basis of compressive behaviour [23]. Fig. 2(a) shows the hardening function,
formulated according to the mechanical properties obtained from the in-situ
characterisation.

[Figure 2 about here.]

As for the fiber/matrix interface, the same constitutive law was used for
both the cohesive elements (in RVE–1) and the cohesive surfaces (in RVE–2

4



and RVE–3). This model was governed by a linear elastic traction-separation
law in which damage was assumed to be triggered by the following quadratic
interaction stress criterion:

( 〈σn〉
σ0
n

)2

+

(
τl
τ0l

)2

+

(
τt
τ0t

)2

= 1, (1)

where 〈·〉 stands for McCaulay brackets, defined as 〈x〉 = max(0, x); σn is the
normal stress; and τl and τt are the longitudinal and transverse stresses, re-
spectively. The initial cohesive interaction response was assumed to be linear
elastic characterised by a contact penalty stiffness, K. Once the damage be-
gan, the stiffness of the cohesive element was reduced based on a scalar damage
parameter, D, whose value evolved from 0 (no damage) to 1 (totally damaged
element). Fig. 2(b) represents the cohesive interaction response with respect to
the effective displacement, δm, defined by Camanho and Dávila [27]. The dam-
age evolution law was governed by the Benzeggagh-Kenane fracture criterion
[28], which is written as:

Gc = Gc
n + (−Gc

n)

(
2Gs

Gn + 2Gs

)ηBK

, (2)

where ηBK is the Benzeggagh-Kenane power exponent, Gc
n and Gc

s are the
normal and shear fracture energies, respectively, and Gn and Gs are the
reciprocal works under mixed mode fracture propagation.

The fibres were modelled as isotropic solids with linear-elastic behaviour up
to failure. To properly capture longitudinal tensile failure, fracture planes were
introduced perpendicular to the fibre direction by means of contacting surfaces
governed by cohesive laws with stochastic failure parameters.

3.2. RVE–1: transverse tension/compression and shear

RVE–1 was a periodic quasi-2D model built on the basis of a spacial dis-
tribution of perfectly parallel circular fibres dispersed within the polymer ma-
trix (see Fig. 3(a)). The cross-section height, h0, represented by the RVE was
250 µm. Thus, the criterion of h0/df ≥ 8, established by González et al. [4],
which guarantees that the simulation results do not depend on h0, was satisfied.
The finite length, l0, of the quasi-2D model was 1 µm, and it was discretised
with a single plane of elements. The fibre spatial distribution was generated
through the Random Sequential Adsorption (RSA) algorithm [24]. In order
to obtain representative values of the properties, 5 realisations with random
microestructures were made (average response is used for discussion).

[Figure 3 about here.]

3.3. RVE–2: longitudinal tension

RVE–2 was a full 3D model and, similarly to RVE–1, it was based on a
extruded distribution of perfectly parallel circular fibres dispersed within the
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matrix (see Fig. 3(b)). However, ho was reduced to the minimum possible
(≈ 120 µm) so that the RVE size criterion [4] was satisfied while minimising
the computational cost. In order to capture the longitudinal failure of the
microstructure, in addition to considering the interface debonding mechanism
through the use of cohesive surfaces, the fracture of the fibres was explicitly
reproduced by modelling fracture planes perpendicular to the longitudinal fibre
direction by means of cohesive surfaces (see Fig. 3(b)). Similar strategies were
successfully used in previous works [12, 29, 30]. In the present case, the mod-
elling strategy proposed by Naya [29] was adopted. The length, l0 = 600 µm, of
the model was established based on the model of Curtin [31]. The strength of
each fracture plane within fibres was randomly assigned according to a Weibull
distribution [32]. The confined length to include the fracture planes as well as
the separation distance between them depended on the Weibull strength and
modulus parameters, σ0 = 3866 MPa and m = 5.5, which were taken from
literature-available data [19]. In order to obtain an approximate prediction of
the average yarn longitudinal strength, it was essential to study the response
of several different microstructures with their corresponding fibre longitudinal
strength distributions. To this end, five different cases were analysed.

3.4. RVE–3: longitudinal compression

RVE–3 consisted of a periodic single fibre model (see Fig. 3(c)); an efficient
approach previously validated by Naya et al. [33] and further exploited by
Herráez et al. [34]. This model was conceived as a simplified version of the
multifibre alternative and its use involves substantial computational savings
while providing meaningful results. The compressive failure of the model is
triggered by instability due to the presence of an imperfection that represents
the initial fibre misalignment, φ0. To consider this feature, the model is built
by extruding the cross section of the representative volume along a sinusoidal
path. The imperfection was intended to cause a type of failure that represented
the fibre kinking phenomenon. The diameter of the fibre coincided with that of
the mean value, df , and the cross section dimensions (h0 = w0) were imposed
so that V l

f was maintained. The length of the RVE was half the wavelength of
the sinusoidal function used to represent de misalignment imperfection. With
parametric analyses, RVE–3 was able to provide the longitudinal compressive
strength, Xc as a function φ0.

4. Results

In this section, the model-predicted response of the yarn to the proposed
solicitations is presented. The analysis culminates with the characterisation of
the yarn materialised by the determination of its mechanical properties. As
an advance, Table 2 collects the characteristics of the predicted yarn behaviour
obtained from the RVE models.
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4.1. RVE–1: transverse tension/compression and shear

The response of the microstructure to the solicitations herein presented
(transverse tension/compression and in-plane shear) resulted in all cases non-
linear (see Fig. 4). This fact contrasts, considering specifically transverse load
cases, with the corresponding response provided by composites based on ther-
moset matrices, such as epoxy ones [29, 33]. Thus, to characterise the responses
obtained from the different load cases, Ramberg-Osgood equation was fitted for
each of the cases. Ramberg-Osgood equation establishes a description of stress-
strain curve by three parameters [35]. Taking as a reference its explicit form, a
variant of the same is proposed. This is written as

σ =
E0ε

(
1 +

(
E0ε

βσmax

)n)1/n
, (3)

where E0 and σmax are the initial modulus and the maximum strength, re-
spectively, which were obtained from the numerical response, n is a parameter
related to the speed of asymptotic convergence and β is a parameter that pro-
vides the asymptotic stress when multiplied by σmax. The curve fittings shown
in Fig. 4 demonstrate the suitability of such an equation for modelling trans-
verse as well as in-plane shear behaviours. The numerical response for each of
the cases presented here is analysed in detail below.

[Figure 4 about here.]

The fracture process under pure transverse tensile stress was controlled by
fibre/matrix interface debonding. This phenomenon was evidenced by the for-
mation of debonds on the poles of the fibres according to the load direction.
The hotspots were identified between the fibre clusters due to the stress concen-
tration. At a certain load level, such areas reached a significant level of inelastic
deformation, causing the integrity of the microstructure to be maintained only
by the loading of matrix ligaments, which ultimately failed. At a global level,
a crack perpendicular to the loading direction appeared (see Fig. 4(a)). The
predicted average transverse elastic modulus, E2 = 13.53 GPa, was quite simi-
lar to that obtained by using the Halpin-Tsai approximation (E2 = 14.5 GPa)
[36]. The predicted average transverse tensile strength, Y t, and strain-to-failure
were considered reasonable when compared to those obtained experimentally by
Yudhanto et al. [37].

Under pure transverse compression, the failure was promoted by the gen-
eration of shear bands in the matrix (see Fig. 4(b)). To reach this stage, the
fibre/matrix interface once again played a significant role. Since the ISS, τ0,
was lower than the PP matrix shear strength, initially an interface debonding
phenomenon took place on the poles of some of the fibres and perpendicular to
the load direction. Subsequently, the matrix was plastically deformed leading to
shear bands and according to a preferential orientation of ≈ 50◦. The average
compression transverse elastic modulus was, as expected, the same as that for
the tensile case. The computed average compression transverse strength, Y c,
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resulted in ≈ 68 MPa, this being reasonable according to data available in the
literature [38].

As for the shear response, two loading cases were analysed: parallel to the
fibres and perpendicular to the fibres. The reason was that, once a certain level
of deformation had been reached (≈ 7%), due to fibre rotation, a gradual in-
crease in stress was expected in the perpendicular case compared to the parallel
case [39]. However, this phenomenon does not occur in the present analyses, as
the failure occurs in both cases studied for a relatively low level of deformation
(≈ 3%) (see Fig. 4(c-d)). Since the fibre/matrix interface was the weakest entity,
the fracture process was triggered by interface debonding. As this phenomenon
spreads, a plastic deformation band developed, culminating in the failure of the
microstructure. The average shear modulus and shear strength were obtained
as G12 = 4.91 GPa and Sl ≈ 27 MPa, respectively.

4.2. RVE–2: longitudinal tension

[Figure 5 about here.]

Fig. 5 shows the longitudinal tensile stress-strain curves predicted by RVE–3 for
five different microstructures with their corresponding random fibre strength as-
signments according to Weibull distribution. The longitudinal tensile response
revealed a linear behaviour practically up to the moment of failure (see Fig. 5).
The curve lost linearity when the first fibre breakage occurred. It can be ob-
served that this event can occur at about 60% of the total load bearing capacity.
However, discerning at a glance its effect on the loading curve is not straight-
forward. With this first occurrence, a sequence of fibre breakage events were
triggered until the collapse of the microstructure, as schematically shown in
Fig. 5 for one of the cases analysed. It should be noted that in order to obtain
a more accurate prediction of longitudinal tensile strength it would be neces-
sary to carry out a RVE size sensitivity study. The size used in this study
(ho ≈ 120 µm; see Fig. 3(b)) established that the critical cluster size is 6 fibres.
This was assumed to be a valid size; however, it should be noted that there is a
possibility that it may be larger. According to the above, the average longitudi-
nal tensile elastic modulus, E11, and longitudinal tensile strength, Xt, resulted
as 50.85 GPa and 1947 MPa, respectively.

4.3. RVE–3: longitudinal compression

Fig. 6 shows the longitudinal compressive elastic modulus, Ec
1(φ0), and

strength, Xc(φ0), predicted by the model as a function of initial misalignment
angle, φ0. The modulus was hardly influenced, but the resistance significantly
decreased with φ0. The latter was also compared with the analytical solution
based on LaRC04 criterion [40] and the one proposed by Pimenta et al. [41]
(see Fig. 6). Given the good correlation, the numerical prediction was consid-
ered reasonable, as it falls between the two analytical solutions, all of them
being very similar for a misalignment angle above 2◦.

Once Xc(φ0) is known, the determination of the longitudinal compressive
strength depends on knowing the representative initial misalignment angle. The
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use of a fibre misalignment probability density function determined by experi-
mental methods such as those proposed by Czabaj et al. [42] and Yugartis [43]
would be the most adequate, as followed by Naya et al. [33]. Unfortunately,
there is no such data available for GFPP, and their determination would be
tedious and expensive. Instead, and for the sake of simplicity, representative
misalignment angles of E-glass fibre-reinforced composites were taken from lit-
erature and a range of interest, delimited by an upper limit (φmax

0 = 3.23◦) and
a lower limit (φmin

0 = 2.74◦), was defined. These limits were established by av-
eraging the misalignment angles of E-glass fibre-reinforced composites obtained
by two statistically different methods analysed by Barbero and Tomblin (see
Table 3. in [44]). Fig. 7 shows the prediction of RVE–3 for these limit values,
as well as for the intermediate value φ0 = 2.98◦.

The sequence of events during the compression process can be described as
follows. Once a certain deformation (ε11 ≈ 0.5%) was reached, the fibre kinking
mechanism was activated by the failure of the interface in the region of fibre
which has the maximum misalignment (central region in RVE–3). Fig. 7 shows
this evolution (for the case of φ0 = 2.98◦) based on the percentage of debonded
interface (with blue diamond-shape marks). The damage at the interface propa-
gates along longitudinal and circumferential paths, progressively increasing the
debonded area and reducing the load transferred between the fibre and the ma-
trix. Finally, at ε11 ≈ 0.83%, the circumferentially-propagated damage in the
plane of maximum misalignment had covered almost the entire perimeter of the
fibre, leading to the instability and collapse of the model.

[Figure 6 about here.]

[Figure 7 about here.]

[Table 2 about here.]

5. Conclusions

The mechanical properties of a thermoplastic yarn from a glass fibre-
reinforced polypropylene (GFPP) woven fabric were determined by using com-
putational micromechanics. Firstly, the properties of the microconstituents were
obtained by in-situ characterisation tests. Secondly, these properties were used
to feed three different RVE models which allowed the prediction of the yarn
longitudinal, transverse and shear responses of the thermoplastic yarn. Con-
trary to what is observed for thermoset composites, the homogenised yarn con-
stitutive behaviour was found to be characterised by significant non-linearity
until failure, specially in transverse and shear directions. Such characteristics
would have been difficult to obtain by means of experimental methods. Hence,
computational micromechanics is revealed to be of great value in the analysis
of thermoplastic composite materials. With the information obtained, a con-
stituent model of the yarn can be formulated, being therefore possible to move
upward in the multiscale modelling strategy to predict the ply properties at the
mesoscale, as will be demonstrated in a follow-up work.
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RVE–3; with their main modelling features.
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Figure 7: (a) Longitudinal compression stress-strain curve of the yarn predicted by RVE–3
for three misalignment angle values within the range of interest: φ0 = 3.23◦ (upper limit),
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From RVE–1

Trans. tension/compression elastic modulus E2

In-plane shear modulus G12

Trans. tensile strength Y t

Trans. compression strength Y c

In-plane shear strength Sl

From RVE–2

Long. tensile elastic modulus Et
1

Long. tensile strength Xt

From RVE–3

Long. compression elastic modulus Ec
1

Long. compression strength Xc

Table 1: Fundamental yarn properties to be determined from the RVE models.
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Longitudinal tension (From RVE–2)

Et
1 = 50.85GPa

Xt = 1947MPa

Longitudinal compression (From RVE–3)

Ec
1 = 50.94GPa

Xc = 416MPa

Transverse tension (From RVE–1)

Et
2 = 13.53GPa

Y t = 24.01MPa

β = 1.05

n = 2.33

Transverse compression (From RVE–1)

Ec
2 = 13.53GPa

Y c = 68.85MPa

β = 1.09

n = 2.59

In-plane shear (From RVE–1)

G12 = 4.91GPa

Sl = 26.80MPa

β = 1

n = 1.84

Table 2: Fundamental yarn properties obtained from the RVE models.
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