Journal article Open Access

Challenges for the Future of Educational Data Mining: The Baker Learning Analytics Prizes

Baker, Ryan S.


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.3554746</identifier>
  <creators>
    <creator>
      <creatorName>Baker, Ryan S.</creatorName>
      <givenName>Ryan S.</givenName>
      <familyName>Baker</familyName>
      <affiliation>University of Pennsylvania</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Challenges for the Future of Educational Data Mining: The Baker Learning Analytics Prizes</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2019</publicationYear>
  <subjects>
    <subject>Baker Learning Analytics Prizes</subject>
    <subject>BLAP</subject>
    <subject>learning analytics</subject>
    <subject>educational data mining</subject>
    <subject>model generalizability</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2019-06-16</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="Text">Journal article</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3554746</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsCitedBy">https://jedm.educationaldatamining.org/index.php/JEDM/article/view/432</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.3554745</relatedIdentifier>
  </relatedIdentifiers>
  <version>1.0.0</version>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode">Creative Commons Attribution Non Commercial No Derivatives 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">Learning analytics and educational data mining have come a long way in a short time. In this article, a lightlyedited transcript of a keynote talk at the Learning Analytics and Knowledge Conference in 2019, I present a vision for some directions I believe the field should go: towards greater interpretability, generalizability, transferability, applicability, and with clearer evidence for effectiveness. I pose these potential directions as a set of six contests, with concrete criteria for what would represent successful progress in each of these areas: the Baker Learning Analytics Prizes (BLAP). Solving these challenges will bring the field closer to achieving its full potential of using data to benefit learners and transform education for the better.</description>
    <description descriptionType="Other">The file is in PDF format. If your computer does not recognize it, simply download the file and then open it with your browser.</description>
  </descriptions>
</resource>
259
38
views
downloads
All versions This version
Views 259259
Downloads 3838
Data volume 8.3 MB8.3 MB
Unique views 240240
Unique downloads 3838

Share

Cite as