Journal article Open Access

Exploring Induced Pedagogical Strategies Through a Markov Decision Process Framework: Lessons Learned

Shen, Shitian; Mostafavi, Behrooz; Barnes, Tiffany; Chi, Min

An important goal in the design and development of Intelligent Tutoring Systems (ITSs) is to have a system that adaptively reacts to students' behavior in the short term and effectively improves their learning performance in the long term. Inducing effective pedagogical strategies that accomplish this goal is an essential challenge. To address this challenge, we explore three aspects of a Markov Decision Process (MDP) framework through four experiments. The three aspects are: 1) reward function, detecting the impact of immediate and delayed reward on effectiveness of the policies; 2) state representation, exploring ECR-based, correlation-based, and ensemble feature selection approaches for representing the MDP state space; and 3) policy execution, investigating the effectiveness of stochastic and deterministic policy executions on learning. The most important result of this work is that there exists an aptitude-treatment interaction (ATI) effect in our experiments: the policies have significantly different impacts on the particular types of students as opposed to the entire population. We refer the students who are sensitive to the policies as the Responsive group. All our following results are based on the Responsive group. First, we find that an immediate reward can facilitate a more effective induced policy than a delayed reward. Second, The MDP policies induced based on low correlation-based and ensemble feature selection approaches are more effective than a Random yet reasonable policy. Third, no significant improvement was found using stochastic policy execution due to a ceiling effect.

The file is in PDF format. If your computer does not recognize it, simply download the file and then open it with your browser.
Files (1.4 MB)
Name Size
-1999949045
md5:08c0c8cf7bc5c77209c6d70f98331176
1.4 MB Download
8
0
views
downloads
All versions This version
Views 88
Downloads 00
Data volume 0 Bytes0 Bytes
Unique views 77
Unique downloads 00

Share

Cite as