Journal article Open Access
Waters, Andrew; Studer, Christoph; Baraniuk, Richard
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nam##2200000uu#4500</leader> <datafield tag="041" ind1=" " ind2=" "> <subfield code="a">eng</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">collaboration-type identification</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Bayesian Rasch</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">sparse factor analysis</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">collaboration</subfield> </datafield> <controlfield tag="005">20200120151110.0</controlfield> <datafield tag="500" ind1=" " ind2=" "> <subfield code="a">The file is in PDF format. If your computer does not recognize it, simply download the file and then open it with your browser.</subfield> </datafield> <controlfield tag="001">3554682</controlfield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Rice University</subfield> <subfield code="a">Studer, Christoph</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Rice University</subfield> <subfield code="a">Baraniuk, Richard</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">438761</subfield> <subfield code="z">md5:46fd1b0e77c1c976b91009ac686f6879</subfield> <subfield code="u">https://zenodo.org/record/3554682/files/-1870275387</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2014-06-29</subfield> </datafield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="p">openaire</subfield> <subfield code="o">oai:zenodo.org:3554682</subfield> </datafield> <datafield tag="909" ind1="C" ind2="4"> <subfield code="c">28-52</subfield> <subfield code="n">1</subfield> <subfield code="p">Journal of Educational Data Mining</subfield> <subfield code="v">6</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="u">Rice University</subfield> <subfield code="a">Waters, Andrew</subfield> </datafield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">Collaboration-Type Identification in Educational Datasets</subfield> </datafield> <datafield tag="540" ind1=" " ind2=" "> <subfield code="u">https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode</subfield> <subfield code="a">Creative Commons Attribution Non Commercial No Derivatives 4.0 International</subfield> </datafield> <datafield tag="650" ind1="1" ind2="7"> <subfield code="a">cc-by</subfield> <subfield code="2">opendefinition.org</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a">Identifying collaboration between learners in a course is an important challenge in education for two reasons: First, depending on the courses' rules, collaboration can be considered a form of cheating. Second, it helps one to more accurately evaluate each learner's competence. While such collaboration identification is already challenging in traditional classroom settings consisting of a small number of learners, the problem is greatly exacerbated in the context of both online courses or massively open online courses (MOOCs) where potentially thousands of learners have little or no contact with the course instructor. In this work, we propose a novel methodology for collaboration-type identification, which both identifies learners who are likely collaborating and also classifies the type of collaboration employed. Under a fully Bayesian setting, we infer the probability of learners' succeeding on a series of test items solely based on graded response data. We then use this information to jointly compute the likelihood that two learners were collaborating and what collaboration model (or type) was used. We demonstrate the efficacy of the proposed methods on both synthetic and real-world educational data; for the latter, the proposed methods find strong evidence of collaboration among learners in two non-collaborative takehome exams.</subfield> </datafield> <datafield tag="773" ind1=" " ind2=" "> <subfield code="n">url</subfield> <subfield code="i">isCitedBy</subfield> <subfield code="a">https://jedm.educationaldatamining.org/index.php/JEDM/article/view/53</subfield> </datafield> <datafield tag="773" ind1=" " ind2=" "> <subfield code="n">doi</subfield> <subfield code="i">isVersionOf</subfield> <subfield code="a">10.5281/zenodo.3554681</subfield> </datafield> <datafield tag="024" ind1=" " ind2=" "> <subfield code="a">10.5281/zenodo.3554682</subfield> <subfield code="2">doi</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">publication</subfield> <subfield code="b">article</subfield> </datafield> </record>
All versions | This version | |
---|---|---|
Views | 38 | 38 |
Downloads | 5 | 5 |
Data volume | 2.2 MB | 2.2 MB |
Unique views | 36 | 36 |
Unique downloads | 5 | 5 |