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Non-recurrent deep convolutional neural networks (DCNNs) are cur-
rently the best models of core object recognition; a behavior sup-
ported by the densely recurrent primate ventral stream, culminat-
ing in the inferior temporal (IT) cortex. Are these recurrent cir-
cuits critical to ventral stream’s execution of this behavior? We rea-
soned that, if recurrence is critical, then primates should outperform
feedforward-only DCNNs for some images, and that these images
should require additional processing time beyond the feedforward IT
response. Here we first used behavioral methods to discover hun-
dreds of these “challenge” images. Second, using large-scale IT
electrophysiology in animals performing core recognition tasks, we
observed that behaviorally-sufficient, linearly-decodable object iden-
tity solutions emerged ∼30ms (on average) later in IT for challenge
images compared to DCNN and primate performance-matched “con-
trol” images. We observed these same late solutions even during
passive viewing. Third, consistent with a failure of feedforward com-
putations, the behaviorally-critical late-phase IT population response
patterns evoked by the challenge images were poorly predicted by
DCNN activations. Interestingly, deeper CNNs better predicted these
late IT responses, suggesting a functional equivalence between re-
currence and additional nonlinear transformations. Our results ar-
gue that automatically-evoked recurrent circuits are critical even for
rapid object identification. By precisely comparing current DCNNs,
primate behavior and IT population dynamics, we provide guidance
for future recurrent model development.
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INTRODUCTION

In a single, natural viewing fixation (∼200 ms), primates can
rapidly identify objects in the central visual field, despite var-
ious identity preserving image transformations, a behavior
termed core object recognition (DiCarlo et al., 2012). Un-
derstanding the brain mechanisms that seamlessly solve this
challenging computational problem has been a key goal of vi-
sual neuroscience (Riesenhuber and Poggio, 2000; Yamins and
DiCarlo, 2016). Previous studies (Freiwald et al., 2009; Hung
et al., 2005; Majaj et al., 2015) have shown that object cate-
gories and identities are explicitly represented in the pattern
of neural activity in the primate inferior temporal (IT) cortex,
and that specific IT neural population codes are sufficient to
explain and predict primate core object recognition. Therefore,
understanding how the brain solves core object recognition
boils down to building a neurally-mechanistic (i.e. neural
network) model of the primate ventral stream that, for any
image, accurately predicts the neuronal firing rate responses
at all levels of the ventral stream, including IT.

At present, the neural network models that best explain

and predict the individual and population responses (image
evoked, time averaged firing rates) of primate (macaque) IT
neurons have been found in the architectural family of deep
convolutional neural networks (DCNNs) trained on object
categorization (Cadieu et al., 2014; Guclu and van Gerven,
2015; Yamins et al., 2014). These neural networks are also
the current best predictors of primate behavioral patterns
over dozens of core object recognition tasks (Rajalingham et
al., 2018; Rajalingham et al., 2015). All neural networks in
this model family are almost entirely feed-forward. Specif-
ically, unlike the ventral stream (Felleman and Van Essen,
1991; Rockland et al., 1994; Rockland and Van Hoesen, 1994;
Rockland and Virga, 1989), they lack cortico-cortical feedback
circuits, sub-cortical feedback circuits, and medium to long-
range intra-area recurrent circuits (as shown in Fig 1A). The
short time duration (∼200 ms) needed to accomplish accu-
rate core object category and identity inferences in the ventral
stream (Hung et al., 2005; Liu et al., 2009; Thorpe et al., 1996)
suggests the possibility that recurrent-circuit driven computa-
tions are not critical for these inferences. In addition, it has
been argued that recurrent circuits might operate at much
slower time scales (Hinton et al., 1995), and thus may be much
more relevant for processes like regulating synaptic plasticity
to improve future behavior (learning). Taken together, the
most parsimonious hypothesis is that core object recognition
behavior does not require recurrent processing. The primary
aim of this study was to try and falsify this hypothesis, and
to provide new constraints to guide further neural network
model development.

There is growing evidence that the feedforward DCNNs
fall short of accurately predicting image-by-image primate
behavior in a variety of situations (Geirhos et al., 2017; Rajal-
ingham et al., 2018). We therefore hypothesized that specific
images for which the object identities are difficult for non-
recurrent DCNNs to solve, but are nevertheless easily solved
by primates, might be critically benefiting from recurrent com-
putations in the primates. Furthermore, previous research
(for review see Lamme and Roelfsema, 2000) suggest that
the impact of recurrent computations in the ventral stream
should be most relevant at later time points in the image
driven neural responses. Therefore we reasoned that IT neural
population representations of objects in images in which those
object inferences critically rely on the recurrent computations
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Fig. 1. Behavioral screening and identification of control and challenge images. A) We task both primates (humans and macaques; top row) and feedforward DCNNs (bottom
row) to identify which object is present in each Test image (1320 images). The top row shows the stages in the ventral visual pathway in primates (retina, LGN: lateral geniculate
nucleus, areas V1, V2, V4, and IT), which is implicated in core object recognition. We can conceptualize each stage as rapidly transforming the representation of the image
ultimately yielding to the primates’ behavior (i.e. producing a behavioral report of which object was present). The blue arrows indicate the known anatomical feedforward
projections from one area to the other. The red arrows indicate the known lateral and top down recurrent connections. The bottom row demonstrate a schematic of a similar
pathway commonly present in the DCNNs. These networks contain a series of convolutional and pooling layers with nonlinear transforms at each stage, followed by fully
connected layers (which approximates macaque IT neural responses) that ultimately gives rise to the models’ simulated behavior. Note that the DCNNs only have feedforward
(blue) connections. B) Object categories. We used ten different object types; bear, elephant, face, plane, dog, car, apple, chair, bird and zebra. C) Binary object discrimination
task. Here we show the timeline of events on each trial. Subjects fixate a dot. The test image (8 deg) containing one of ten possible objects was shown for 100 ms. After a 100
ms delay, a canonical view of the target object (the one present in the test image) and a distractor object (from the other 9 objects). appeared, and the human or monkey
indicated which object was present in the test image by clicking on or making a saccade to one of the two choices respectively. D) Comparison of monkey performance (pooled
across 2 monkeys) and DCNN performance (AlexNet; ‘fc7’ Krizhevsky et al. 2012). Each dot represents the behavioral task performance (; refer Methods) for a single image.
We reliably identified challenge (red dots) and control (blue dots) images. Error bars are bootstrapped s.e.m E) Examples of four challenge and four control images.

2 | Kar et al.

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/354753doi: bioRxiv preprint first posted online Jun. 26, 2018; 

http://dx.doi.org/10.1101/354753
http://creativecommons.org/licenses/by-nc-nd/4.0/


will require additional processing time to emerge (beyond the
initial evoked IT population response that begins at ∼90 ms;
feedforward pass).

To discover such images, we behaviorally compared pri-
mates (humans and monkeys) and a particular non-recurrent
DCNN (AlexNet ’fc7’; Krizhevsky et al., 2012) to identify
two groups of images — those for which object identity is
easily inferred by the primate brain, but not solved by DCNNs
(referred to here as “challenge images”), and those for which
both primates and models easily infer object identity (referred
to here as “control images”). To test our neural hypothesis, we
simultaneously measured IT population activity in response
to each of 1320 images, using chronically implanted multi-
electrode arrays across IT cortex of both the left and right
hemispheres of 2 monkeys, while monkeys performed an object
discrimination task.

Our results revealed that object identity decodes from IT
neural populations for the challenge images took an average
of ∼30ms longer to emerge (∼145 ms from stimulus onset)
compared to control images (∼115 ms from stimulus onset).
Consistent with previous results, we also found that the top
layers of DCNNs optimized for object categorization perfor-
mance predicted ∼50% of IT image-driven neural response
variance at the leading edge of the IT population response.
However, this fit to the IT response was significantly worse
(<20% explained variance) at later time points (150-200 ms
post stimuli onset) — the time points where linear decoders
show that the IT population solutions to these challenge im-
ages have emerged. Taken together, these results argue against
feedforward only models for the brain’s execution of core ob-
ject recognition, and instead imply a behaviorally-critical role
of recurrent computations. Notably, we also found the same
neural population phenomena while the monkeys passively
viewed the images, implying that the putative recurrent mech-
anisms for successful core object inference in the primate are
automatic and not strongly state or task dependent. Further-
more, we show that the observed image-by-image difference in
DCNN and primate behavior along with precisely measured
IT population dynamics for each image better constrain the
next generation of ventral stream neural network models over
previous qualitative approaches.

RESULT

As outlined above, we reasoned that, if recurrent circuits are
critical to core object recognition behavior, then current non-
recurrent DCNNs should perform less accurately than the
ventral stream for some images, and the first goal of this study
was to discover many such “challenge” images. Rather than
making assumptions about what types of images (occluded,
cluttered, blurred, etc.) might most critically depend on
feedback, we instead took a data driven approach to identify
such images.

Identification of DCNN challenge and control images. To com-
pare the behavioral performance of primates (humans and
macaques) and current DCNNs image-by-image, we used a bi-
nary object discrimination task that we have previously tested
extensively (Fig 1C; Rajalingham et al., 2018; Rajalingham
et al., 2015). For each trial, monkeys used an eye movement
to select one of two object choices, after we briefly (100 ms)
presented a test image containing one of those choice objects

(see Primate Behavioral Testing in Methods). Once monkeys
are trained in the basic task paradigm, they readily learn each
new object over full viewing and background transformations
in just one or two days and they easily generalize to completely
new images of each learned object (Rajalingham et al., 2015).
This suggests that this task taps into relatively natural visual
behavior, and that the object learning is unlikely to produce
strong changes in the ventral visual stream.

We tested a total of 1320 images (132 images of each of ten
objects), in which the primary visible object belonged to one
of 10 different object categories (Fig 1B). To make the task
challenging, we included various image types (see Fig S1A):
synthetic objects with high view variation (scale, position and
rotation) on cluttered natural backgrounds (similar to the
ones used in Majaj et al., 2015; Pinto et al., 2008), images
with occlusion, deformation, missing object-parts, and colored
photographs (MS COCO dataset; Lin et al., 2014).

Behavioral testing of all of these images was done in humans
(n=88; Fig S2) and in monkeys (n=2; Fig 1D). We estimated
the behavioral performance of the subject pool on each image,
and that vector of image-wise d′ values is referred to as I1 (see
Methods; also refer Rajalingham et al., 2018). We collected
sufficient data such that the reliability of the I1 vector was
reasonably high (median split half reliability ρ̃, humans = 0.84
and monkeys = 0.88). To test the behavior of each DCNN
model, we first extracted the image evoked features of the
penultimate simulated neural layer, e.g. ‘fc7’ layer of AlexNet
(Krizhevsky et al., 2012). We then trained ten linear decoders
(see Methods) to derive the binary task performances, and
used a different set of images to test each model. Fig 1D
shows an image-by-image behavioral comparison between the
pooled monkey population and AlexNet ‘fc7’. We identified
"control" images (blue dots; Fig 1D) as those where the absolute
difference in primate and DCNN performance do not exceed
0.4 (d′ units), and we identified “challenge” images (red dots;
Fig 1D) as those where the primate performance was at least
1.5 units greater than the DCNN performance. The object
level data is elaborated in the panels of Fig S3. ; Four examples
each from both category of images are shown in Fig 1E. The
challenge images were not idiosyncratic to our choice of the
AlexNet (‘fc7’) model. Many of them also turned out to
be challenge images for a range of other tested feedforward
DCNNs, e.g., VGG-S (Chatfield et al., 2014; Sermanet et al.,
2013), Zeiler and Fergus (2014); see Fig S1B.

Our results show that on average, both macaques and
humans outperform AlexNet (‘fc7’). Most importantly, this
image search procedure produced two groups of images: 1) 266
challenge images that are accurately solved by primates, but
are not solved by a leading feedforward-only DCNN (AlexNet;
but see later), and 2) 149 control images that are solved equally
well by primates and the DCNN. On visual inspection, we did
not observe any specific image property that differentiated
between these two groups of images (analyzed in more detail
below).

Temporal evolution of image-by-image object representation
in IT. Previous studies (Hung et al., 2005; Meyers et al., 2008)
have shown that the identity of an object in an image is of-
ten accurately conveyed in the population activity patterns
of the inferior temporal cortex in the macaque. Specifically,
appropriately weighted linear combinations of the activities
of these IT neurons can approximate how neurons in down-
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Fig. 2. Large scale multi-unit array recordings in the macaque inferior temporal cortex. A) Schematic of array placement, neural data recording and object solution time
estimation. We recorded extracellular voltage in IT from two monkeys, each hemisphere implanted with 2 or 3 Utah arrays. For each image presentation (100 ms), we counted
multiunit spike events (see Methods for details), per site, in non overlapping 10 ms windows, post stimulus onset to construct a single population activity vector per time bin.
These population vectors (image evoked neural features) were then used to train and test cross-validated linear support vector machine decoders (d) separately per time bin.
The decoder outputs per image (over time) were then used to perform a binary match to sample task, and obtain neural decode accuracies (NDA) at each time bin. An example
of the neural decode accuracy over time is shown in the top panel. The time at which the neural decodes equal the primate (monkey) performance, is then recorded as the
object solution time (OST) for that specific image. B) Examples of IT population decodes over time, with the estimated object solution times for four images; two control (top
panel: blue curves) and two challenge images (bottom panel: red curves). The red and blue dots are the estimated neural decode accuracies at each time bins. The solid lines
are nonlinear fits of the decoder accuracies over time (see Methods). The gray lines indicate the performance of the primates (pooled monkey) for the specific images. Errorbar
indicates bootstrapped s.e.m. C) Distribution of object solution times for both control (blue) and challenge (red) images. The median OST for control (blue) and challenge (red)
images are shown in the plot with dashed lines.
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stream brain regions could integrate this information to form
a decision about the object identity, and such weighted linear
combinations can accurately predict the average behavioral
performance in all tested core object recognition tasks (Majaj
et al., 2015). In previous work, we assumed one weighted
linear combination of the neural population response vector
per object category (each is termed an “object decoder”), and
we adopted that assumption here as well.

In this study, we aimed to compare and contrast these
object decodes from IT for the challenge and control images.
First, we wanted to know if these IT object decoders were as
accurate as the primates for both types of images, as would
be predicted from previous work (Majaj et al., 2015), as that
would demonstrate that the ventral stream successfully solves
the challenge images (images that are, by definition, not solved
by current feedforward neural network models). Second, we
reasoned that, if recurrent computations were crucial to these
solutions, those computations would introduce additional pro-
cessing time, and therefore IT object decodes for challenge
images should emerge later than IT object decode for control
images.

To estimate the temporal evolution of the IT object decode
for each image, we used large scale multi-electrode array record-
ings (Fig 2A) to sample and record hundreds of neural sites
across IT cortex in two awake, behaving macaques. In each
monkey, we implanted three chronic 10 x 10 microelectrode
arrays, inferior to the superior temporal sulcus (STS) and
anterior to the posterior middle temporal sulcus (pMTS); each
array sampled from ∼25 mm2 of the posterior, central and
anterior part of IT. Recording sites that yielded a significant
visual drive (d′visual), , high selectivity and high image rank
order response reliability (ρIRO

site ) across trials were considered
for further analyses (see Neural recording quality metrics in
Methods). In total, we recorded from 424 valid IT sites which
included 159 and 139 sites in the right hemisphere and 32 and
94 sites in the left hemisphere of monkey M (shown as inset
in Fig 2A) and monkey N respectively.

To determine the time at which explicit object identity
representations are sufficiently formed in the IT population
activity, we plotted the trajectory of the IT object decode
accuracy for each image and determined the time that it
reached the level of the subject’s (pooled monkey) behavioral
accuracy on that image. We termed this time, the “object
solution time” (OST), and we emphasize that each image
has a potentially unique solution time (OSTimage). Briefly,
object solution time for each image, was defined as the time
(relative to image onset) when the linear IT population decode
(see Methods; Fig 2A, top panel) first rises to within the
error margins of the pooled monkey behavioral score for that
image. Because we recorded many repetitions of each image,
we were able to measure theOSTimage very accurately (average
standard error of ∼9ms across all images, bootstrapped across
repetitions).

Fig 2C shows the temporal evolution of the IT object
decode and the OST estimates for two control images and two
challenge images. For all four images, the correct answer is the
object ‘bear’ (insets in Fig 2B). Two observations are apparent
in these example images. First, for both the control and
the challenge images, the IT decodes achieve the behavioral
accuracy of the monkey (note, behavioral accuracy is similar
for all four images, by design). Second, the IT decode solutions

for challenge images emerge later than the solutions for the
control images.

Both of these observations were also found on average in the
full sets of challenge and control images. First, the IT decodes
achieved the primate behavioral level of accuracy on average
for the challenge and control imagesets ( ∼91 % of challenge
images and ∼97 % of control images), which meant that we
could determine an OST for all of these images. Second, and
consistent with our hypothesis, we observed that IT object
solution times (OSTimage) for the challenge images were, on
average, ∼30 ms later compared to the control images. Specif-
ically, the median OST for the challenge images was 145± 1.4
ms (median ± SE) from stimulus onset and the median OST
for the control images was 115 ± 1.4 ms (median ± SE) (Fig
2C). Both of these results are consistent with the hypothesis
that recurrent circuit computations are critical to core object
recognition (see Introduction). Thus we next carried out a
series of controls to rule out alternative explanations for these
results.

Comparison of initial visual drive in IT evoked by control and
challenge images. We considered the possibility that the ob-
served time lag for the challenge images’ OSTs might have
been due to the IT neurons taking longer to start responding
to these images. For example, if the information in those im-
ages took longer to be transmitted by the retina. However, the
data do not support this possibility. First, we observed that
control and challenge images share the same population neural
onset response latencies (latency = 0.17 0.21 ms, median SE ;
paired t-test; t(423) = 0.3896, p = 0.69; see Fig 3A and Fig
S4B), suggesting that the initial visual drive for the images in
both sets arrive at approximately the same time in IT. How-
ever, we found that firing rates (R) were significantly higher
(%R = 17.3%, paired t-test; t(423) = 6.8848, p <0.0001) for
challenge images compared to control images, tested on a 30
ms window centered at 150 ms post stimuli onset. We do
not yet know how to interpret this higher firing rate, but one
possible explanation of this difference in IT mean firing rate is
the effect of additional inputs from activated recurrent circuits
into the IT neural sites at later time points (see Discussion).
Regardless, these observations show that the challenge images
drive IT neurons just as well as the control images during the
early phase of the response.

When we closely examined the neural population response
latencies for each image, we found that the time at which the IT
population firing rates started to increase from baseline (onset
latency; tonset) and when the population firing rate reached
its peak (tpeak) did not coincide with the object solution times
for that image (Fig 3B and 3C). We also found no correlation
(Pearson r = 0.009; p = 0.8) between the population response
onset latency for each image (see Methods) and the OST
for that image (see Fig 3D). For example, inspection of Fig
3D reveals that some of the challenge images evoke faster-
than-average latency responses in IT, yet have late OSTs
(∼200 ms). Conversely, some of the control images evoke
slower-than-average IT responses, yet have very relatively fast
OSTs (∼110 ms). In sum, these results show that visual drive
rapidly reaches IT for nearly all of these images, but that,
for some images (mostly the challenge images), that visual
driven population activity takes longer to evolve to an accurate,
linearly-decodable format (OST).
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Comparison of effects of low level image properties on chal-
lenge and control image OSTs. We considered the possibility
that the time lag for the challenge image OSTs might have been
due to low-level image property differences between the two
image-sets. From previous research, we know that temporal
properties of IT neurons depend critically on low level image
features like total image contrast energy (Oram, 2010), spatial
frequency power distribution (Rolls et al., 1985), and spatial
location of the visual objects (Op De Beeck and Vogels, 2000).
So we asked if these low level explanations might explain the
lag of the challenge image OSTs. First, we did not notice any
significant differences (tonset = 0.17 ms, paired t-test; t(423)
= 0.3896; p=0.697) in neural firing rate onset latencies (Fig
3A, Fig S2B) between control and challenge images across the
recorded neural sites. We also observed that solution times
were not significantly correlated with image contrast (r = -0.04;
p = .47). Second, we used the SHINE (spectrum, histogram,
and intensity normalization and equalization) technique (Wil-
lenbockel et al., 2010) to equate low level image properties
across the control and challenge image-sets, and re-ran the
recording experiment (subsampling 118 images each from the
control and challenge imagesets; no. of repetitions per image
= 44; see Methods). The average estimated difference in OST
values between “SHINED” challenge and control images was
still ∼24 ms (Fig S4C).Third, we sub-sampled the two image
sets to make sure that the distribution of object eccentricity
was perfectly matched between the two sets, but we still found
an almost identical average OST lag between these two images
sets (average ∆OST = 27 ms).

Object solution estimates and timing during passive viewing.
To test whether the late-emerging object solutions in IT are
task dependent, we also recorded IT population activity during
passive viewing of both the challenge and the control images.
Monkeys fixated a dot, while images were each presented for
100 ms (same duration as the active task viewing of the image,
see Figure. 1), followed by 100 ms of no image, followed by the
next image for 100 ms, etc. (typically 5 images were presented
per fixation trial; see Methods). A-priori, several outcomes
of switching from active to passive viewing seemed likely: a
decreased goodness of both the early-emerging and the late-
emerging IT decoded solutions, a decreased goodness of the
late-emerging solutions, a further delay in the late-emerging
solutions, or no effect.

First, similar to the active condition (%∆R = 17.3%), we
observed that challenge images evoked a significant higher
firing rate (%∆R = 13.2%, paired t-test; t(423) = 8.27, p
<0.0001) at later time points (tested on a 30 ms window
centered at 150 ms post stimuli onset) compared to the control
images. Second, similar to the active viewing, we observed that
we could successfully estimate the object solution times for 92%
of challenge and 98% of control images. The object solution
times estimated during the active and passive conditions were
also significantly correlated (Spearman r = 0.76; p <0.0001).
Similar to the active condition, challenge image solutions, on
average, required an additional time of ∼28 ms to achieve full
solution compared to the control images. In sum, we observe
that the solutions in IT emerge with a similar lag and overall
accuracy (goodness) during passive viewing. Therefore, we
conclude that the putative recurrent signal that emerges in
IT is not entirely task dependent and the mechanisms giving
rise to this activity is fairly reflexive. This is consistent with
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Fig. 4. Predicting IT neural responses with DCNN features. A) IT predictivity of AlexNet’s ’fc7’ layer as a function of object solution time (ms). For each time bin, we consider IT
predictivity for images that have a solution time equal to or higher than that time bin. Error bars indicate the standard error of mean across neurons. Top panel shows the
distribution of object solution times for control (blue) and challenge (red) images. B) IT predictivity computed separately for late OST images (OST>150 ms; total of 349 images)
at the corresponding object solution times, as function of deep (AlexNet, Zeiler and Fergus, VGG-S) and deeper (Inception, ResNet) CNNs. * indicates a statistically significant
difference between the two groups. C) Comparison of median OST for challenge images across CNNs of different depth. Images that remain unsolved (i.e. categorized by us
as “challenge” images) by deeper CNNs showed even longer OSTs in IT cortex than the original full set of challenge images. * indicates a statistically significant difference
between the two groups.

previous findings of McKee et al. (2014), where they reported
that IT cortex predominantly shows task-independent visual
feature representation. ).

IT predictivity across time using current feedforward deep
neural network models of the ventral stream. We reasoned
that, if the late-emerging IT population solutions are indeed
dependent on recurrent computations that are lacking in cur-
rent DCNN models, then perhaps the previously demonstrated
ability of those models to (partially) explain and predict in-
dividual IT neurons (Yamins et al., 2014) was due mostly to
their ability to capture the feedforward portion of the IT re-
sponse. To test this idea, we asked how well AlexNet features
could predict the time-evolving IT neural population response
vector up to and including the object solution time for each
image. To do this, we used previously described methods.
Specifically, we quantified that IT population goodness of fit
as the median (over neurons) of the noise corrected explained
response variance score (IT predictivity; Figure S4A; also see
Methods; similar to Yamins et al., 2014).

First, we observed that the top layers (penultimate) of
a performance optimized feedforward DCNN (AlexNet ‘fc7’)
predict 44.3 ± 0.7 % of the potentially explainable IT neural
response variance during the early phases (90-110 ms) of IT
responses (Fig 4A) for all images This result provides further
confirmation that feedforward DCNNs indeed approximate the
early (putative largely feedforward) IT population response
pattern. However, we observed that the ability of AlexNet ‘fc7’
model features to predict the IT population vector significantly
worsened (<20% explained variance) as that response vector
evolved over time(>150ms) for images with late OSTs (Fig
4A). This drop in IT predictivity was not due to low signal to
noise ratio of the neural responses during those time points be-

cause our explained variance measure already compensates for
any changes in SNR, and also because SNR remains relatively
high in the late part of the IT responses (Fig S6). In sum, the
gradual drop in IT predictivity by these feedforward DCNN
models is consistent with the hypothesis that late-phase IT
population responses are modified by the action of recurrent
circuits that are not contained in those models. Consistent
with our hypothesis that challenge images rely more strongly
on recurrence than control images, we observed that the drop
in IT predictivity coincided with the solution times of the chal-
lenge images (refer top panel histograms for OST distributions
of challenge and control images).

Evaluation of deeper CNNs as models of ventral visual
stream processing. Although, the above results suggest the
likely importance of recurrent computations in the primate
ventral stream for some images, we are still left with the open
question: what specific computational role does recurrent cir-
cuits provide beyond the feedforward representation during
core object recognition behavior? We reasoned that recur-
rence during core object recognition in the ventral stream is
functionally equivalent to stacking further non-linear transfor-
mations onto the initial evoked (∼feedforward) IT population
response pattern.Therefore, we speculated that simulated neu-
rons from deeper CNNs (those with a higher number of stacked
nonlinear transformations) might better approximate the re-
current computations of the ventral stream, even though they
were not specifically designed to emulate the many anatomical
recurrent circuits of the ventral stream. To test this idea,
we asked if existing very deep CNNs provide a better neural
match to the IT response at its late phase and to the image-
by-image patterns of behavioral performance. Currently there
are many deeper CNNs available that outperform the baseline
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DCNN used here (AlexNet), such as inception-v3 (Szegedy et
al., 2016), inception-v4 (Szegedy et al., 2017) and ResNet-50,
ResNet-101(He et al., 2016). Based on the number of layers,
we divided the tested DCNN models into two groups, deep (8
layers; AlexNet, Zeiler and Fergus model, VGG-S) and deeper
(>20 layers, inception-v3, inception-v4, ResNet-50, ResNet-
101) CNNs. We made three observations, that corroborate
our speculation.

First, we searched all the above mentioned neural networks
to determine which layers of the models best predict the late
IT responses for the images with late OSTs. Interestingly,
we observed that layers of deeper CNNs predict IT neural re-
sponses at the late phases significantly higher (%∆Predictivity
= 10.72%, , paired t-test; t(423) = 8.36, p <0.0001) than shal-
lower models like AlexNet (Fig 4B). This observation suggests
that deeper CNNs might indeed be approximating “unrolled”
versions of the ventral stream’s recurrent circuits. Second, as
expected from the Imagenet challenge results (Russakovsky et
al., 2015), we observed an increased performance and there-
fore reduced number of “challenge” images for deeper CNNs.
Third, we found that the images that remain unsolved (i.e.
categorized by us as “challenge” images) by these deeper CNNs
showed even longer OSTs in IT cortex than the original full
set of challenge images (Fig 4C). Assuming that longer OST
is a signature of more recurrent computations, this suggests
that newer, deeper CNNs have implicitly, but only partially,
approximated — in a feedforward network — some of the
computations that the ventral stream implements recurrently
to solve some of the challenge images.

Comparison of backward visual masking between challenge
and control images . So far we have observed that feedforward
DCNNs poorly predict the IT neural responses at later times
beyond the putative feedforward response (90-110 ms post
image onset), during which a majority of the challenge im-
ages (∼82 %) develop their object solutions in IT. Based on
these results, we hypothesized that these later IT population
responses are critical for successful core object recognition
behavior for the challenge images. To further test this idea,
we performed an additional behavioral experiment that aimed
to corroborate the neurophysiology results. We modified the
original object discrimination task by adding a visual mask
(phase scrambled image; Stojanoski and Cusack, 2014) for
500 ms (Fig 5A), immediately following the test image pre-
sentation: a paradigm commonly known as backward visual
masking. This type of backward masking has been previously
associated with selective disruption of the recurrent inputs to
an area from other areas (Fahrenfort et al., 2007; Lamme et al.,
2002). Given that solutions for the challenge images can arise
in IT cortex only at later time points compared to the control
images, we reasoned that if disruption in processing produced
by a visual mask affects IT at earlier times, it will produce
larger behavioral deficits for challenge images compared to
control images. However, we predicted that these differences
should subside at longer presentation times when enough time
is provided for the recurrent processes to build a sufficient
object representation for both control and challenge images in
IT. Therefore, during this experiment, we tested a range of
masking disruption times by randomly interleaving the sample
image duration (and thus the mask onset). Specifically, we
tested 34, 67, 100, 167 and 267 ms (see Methods). Our results
(Fig 5B) show that visual masking indeed had a significantly

stronger effect on the challenge images at smaller presentation
durations compared to the control images. Consistent with
our hypothesis, we did not observe any measurable masking
differences between the two imagesets at longer presentation
times (∼267 ms). Median d′ (difference between control and
challenge images grouped by objects) averaged across all 10
objects were 0.5, 0.81, 0.33, 0.40, and -0.02 for 34, 67, 100,
167 and 267 ms presentation duration respectively. The dif-
ference in performance was statistically significant at the .05
significance level (Bonferronni adjusted) for all presentation
durations except 267 ms. Together with the neurophysiology
results, these observations provide converging evidence to-
wards a critical role of recurrent ventral stream computations
in the brain’s ability to infer object identity in the challenge
images.

Constraints for future models provided by our data. The re-
sults above motivate a change in the architecture of artificial
neural networks that aim to model the ventral visual stream
(i.e. addition of recurrent circuits) — motivating a switch from
largely feedforward DCNNs to recurrent DCNNs. However,
a primary goal of experiments is not simply to provide moti-
vation, but to also provide validation and strong constraints
for guiding the construction of new models. The results ob-
tained here provide three precisely measured constraints for
next generation neural network models. First, we provide a
behavioral vector, ∆d′ that quantifies the performance gap
between current feedforward DCNNs (e.g. AlexNet) and the
image-by-image primate core object recognition behavior (I1).
For each of these images, we have estimated the time at which
object solutions are sufficiently represented in the macaque
IT cortex. So the other two constraints include the neural
responses to each of the tested images at the object solution
times as well as a vector of estimated OSTs (each element of
the vector corresponds to an image). Next generation dynamic
models of the ventral stream should be constrained to produce
the target features (object solutions) at these times.

Model-driven versus image-property driven approaches to
study recurrence . Previous research has suggested that re-
current computations in the ventral stream might be necessary
to achieve pattern completion when exposed to occluded im-
ages (Spoerer et al., 2017; Tang et al., 2017; Walther et al.,
2005), object based attention in cluttered scenes (Bichot et
al., 2015; Walther et al., 2005) etc. Indeed, we observe that
several image properties like object size, presence of occlusion,
and object eccentricity (Fig 6) are significant predictors (see
Methods: Estimation of the OST prediction strength) of our
putative recurrence signal (the OST vector). However, our
results above suggest another possible image-wise predictor
of ventral stream recurrence — the difference in performance
between feed-forward DCNNs and primates, ∆d′ (Fig 6). This
vector is likely itself dependent on a complex combination of
image properties, such as those mentioned above. However, it
is directly computable and our results show that it can serve
as a much better model guide. In particular, we find that ∆d′
is significantly correlated with IT OST (Spearman ρ = 0.44;
p < 0.001), and, in this sense, is a much better predictor of
likely recurrence than any of the individual image properties.
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Discussion

The overall goal of this study was to ask if recurrent circuits
are critical to ventral stream’s execution of core recognition
behavior — the ability to report object category in the central
10◦ with less than 200 ms of image viewing duration. We
reasoned that, if computations mediated by recurrent circuits
are critical for some images, then one way to find such images
is by finding images that are difficult for non-recurrent DC-
NNs to solve, but are nevertheless easily solved by primates.
Thus we first used extensive behavioral testing to find such
“challenge" images along with behaviorally matched “control"
images. With these in hand, we then aimed to look for a
likely empirical signature of recurrence — the requirement of
additional time to complete successful processing. To ask this
question, we first had to confirm that the challenge images that
are behaviorally solved (by definition) were, in fact, solved by
the ventral stream — as predicted by current models of the
neural mechanisms underlying core recognition (Majaj et al.,
2015). Using large-scale IT population neurophysiology, we
confirmed part of this prediction: behaviorally-sufficient lin-
early decodable object solutions emerged in the IT population
activity for essentially all of the challenge images (assessed
with the same number of neurons and training exampled as
for the control images). But looking at the temporal evolution
of these IT population solutions simultaneously revealed a key
observation not revealed in prior work (e.g. Majaj et al., 2015)
— the IT solutions were lagged by an average of ∼30ms later
for challenge images compared to the “control” images. In
addition, we also found that the temporally lagged IT popula-
tion response patterns that contained the linearly-decodable
object solutions were poorly predicted by DCNN model “neu-
ral” population responses to the same challenge images. This
stands in contrast to the early IT population responses, which
were much better predicted by the DCNN model, consistent
with prior work (Yamins et al., 2014). Notably, we observed
both of these findings during active task performance (when
the animals had to report the identity of the dominant object
in the image), but we found all of these results to be almost
identical during passive viewing. Taken together, these results
imply that automatically-evoked recurrent circuits are critical
for object identification behavior even at the fast timescales
of core object recognition.

The idea that “feedback” is important to vision and to
object recognition is not new (see Lehky and Tanaka, 2016
for review). While broad concepts about the potential role of
feedback in vision have been previously suggested and partly
explored, we believe that this is the first work to examine these
questions at the fast times scale of core object recognition,
and the first to do so using image computable models of the
neural processing to guide the choice of experiments (i.e. the
images and discrimination tasks).

Late object identity solution times in IT imply recurrent com-
putations underlie core recognition. The most parsimonious
interpretation of the results reported here is that the late
phases of the stimulus evoked responses in IT depend on some
type (or types) of recurrent computations that are not present
in today’s non-recurrent DCNN ventral stream models. And
our comparisons with behavior suggest that these IT dynamics
are not epiphenomena, but are critical to the core recognition
behavior. But what kind(s) of additional computations are

taking place and where in the brain do those recurrent cir-
cuit elements live? We do not yet know the answers to these
questions, but we can speculate to generate a testable space
of hypotheses. Based on the number of synapses between
V1 and IT, Tovee (1994) proposed that the ventral stream
comprises of stages that are approximately 10-15 ms away
from each other. Our observation of an additional processing
time of 30 ms for challenge images is therefore equivalent to
at least two additional processing stages. Thus, one possible
hypothesis is a cortico-cortical recurrent pathway between the
cortical areas including IT and lower areas like V4, V2 and
V1 (similar to suggestions of Nurminen et al., 2018; Ullman,
1995; van Kerkoerle et al., 2014). This possibility is consistent
with observations of temporally-specific effects in the response
dynamics of V4 neurons (Fyall et al., 2017) for images with
occlusion. Alternatively, the temporal lag signature we report
here is also consistent with the possibility that IT is receiv-
ing important recurrent flow from downstream areas like the
prefrontal and perirhinal cortices (e.g. as suggested by Bar et
al., 2006). We also cannot rule out the possibility that all of
the additional computations are due to recurrence within IT
itself (e.g. consistent with recent models such as, Tang et al.,
2017), or due to subcortical circuits (e.g. basal ganglia loops;
Seger, 2008). These hypotheses are not mutually exclusive.
Given all that prior work, the main contribution of our work
is to take the very broad notion of “feedback” and pin down a
narrower case that is both experimentally tractable (i.e. the
neural phenomena is observable in IT for a prescribed set of
images) and is guaranteed to have high behavioral relevance.
The present results now motivate the need for direct pertur-
bation studies that aim to independently suppress each of
those circuit motifs to assess the relative importance of each
of these circuit motifs. Such perturbations should be paired
with IT electrophysiological recordings and behavior. The
results of the present study also provide sets of images and
predictions of exactly how and when IT will be disrupted when
the critical circuit motif(s) is/are suppressed. Specifically, our
measurements of both the ∆d′ and the OST vectors provide
observable signatures of recurrent computations that make
clear predictions for such direct neural suppression studies.
Based on our results here, we predict that a specific disruption
of the relevant recurrent circuits will prevent the emergence of
the object solutions to the challenge images in IT. This will in
turn result in larger behavioral deficits in the challenge images
(relative to the control images). Note however, that our results
are stronger than that — they suggest exactly which set of
images will be most affected (a mixture of mostly challenge
images and some control images), and this knowledge can be
used to optimize the image sets and behavioral tasks for these
next experiments.

Temporally specific failures of current ventral stream encod-
ing models imply that recurrent circuits are needed to im-
prove those models. Prior to this study, the best models of
the ventral visual stream belonged to a class of feedforward
DCNNs, e.g. HMO (Yamins et al., 2014), AlexNet (Krizhevsky
et al., 2012) and VGG (Chatfield et al., 2014; Simonyan and
Zisserman, 2014). These studies (Cadieu et al., 2014; Yamins
et al., 2014) have demonstrated that feedforward DCNNs
can explain ∼50% of the within-animal explainable response
variance in stimulus evoked V4 and IT responses (averaged
responses from 70 - 170 ms post-stimulus onset). Our results
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here confirm that feedforward DCNNs indeed approximate
∼50% of the first 30 ms (∼90-120 ms) of the stimulus evoked,
within-animal explainable IT response variance, thus estab-
lishing DCNNs as a good functional approximation of the
feedforward pass of the primate ventral stream. However,
in addition, we observed that the ability of DCNN neural
populations to predict IT neural responses drops significantly
at later phases of the stimulus evoked IT responses (> 150
ms after image onset, see Figure 4A). This is consistent with
our inference that the late object solution times for challenge
images are primarily caused by the additional processing time
required by recurrent processes in the ventral stream. Re-
cruitment of recurrent circuits in the form of both intra and
inter-cortical feedback during these times might explain why
the feedforward-only DCNN activations poorly predict the
late IT responses.

Unique object solution times per image motivate the search
for better models of the link between IT neural population pat-
terns and core object recognition behavior. Majaj et al. 2015
experimentally rejected a large number of alternative models
that link ventral stream population activity to core object
recognition behavior (aka “decoding models”). But that study
was unable to reject a small set of specific models that were
each quantitatively sufficient to predict the behavioral per-
formance level for each and every tested object recognition
task. That set of models was referred to as learned weighted
sums of randomly selected average neuronal responses spatially
distributed over monkey IT (LaWS of RAD IT). However, in
the Majaj et al. (2015) study, the key predictor variable
(behavioral performance) was computed as the average over
all test images for that task. The authors speculated that
a much finer-grain predictor variable, e.g. image-level be-
havioral performance, could provide a stronger test and thus
might be able to falsify some or all of the LaWS of RAD
IT decoding models. Here we observe that, even for images
that have statistically non-distinguishable levels of behavioral
performance, the linearly-decodable information in the IT pop-
ulation pattern varies quite substantially over the IT response
time window used by many of the LaWS of RAD IT decoding
models (70-170 ms post stimulus onset). Taken together, this
argues that future work in this direction might successfully re-
ject most or even all of the LaWS of RAD IT decoding models,
and thus drive the field to create better neuronal-to-behavioral
linking hypotheses.

Role of recurrent computations: deliverables from these data
and insights from deeper CNNs. Prior studies have strongly
associated the role of recurrent computations with overcoming
certain specific challenging image properties like occlusion
(Spoerer et al., 2018), high levels of clutter (Walther et al.,
2005) or engagement in tasks like visual pattern completion
(Tang et al., 2017). While we agree that such images or task
conditions might recruit recurrent processes in the ventral
stream, the present work argues that this is not the most effi-
cient approach to constrain future model development. Specif-
ically, we have here found that a very good way to expose
which images lean most of recurrent computations in the ven-
tral stream is to find images in which the difference between
feedforward-only DCNN and primate behavior (∆d′) is the
largest. This difference is a far better predictor of the neural
phenomena of recurrence than any of the text image properties

(see Figure. 6).
While this is a very good way to focus experimental efforts,

it does not yet expose the computational role of recurrence,
i.e., the exact nature of the computational problem solved
by recurrent circuits during core object recognition. Inter-
estingly, we found that deeper CNNs like inception-v3, v4
(Szegedy et al., 2017), ResNet-50,101 (He et al., 2016), that
introduce more nonlinear transformations to the image pixels,
compared to shallower networks like AlexNet or VGG, are
better models of the late phase of IT responses (the phase
that is most behaviorally relevant for DCNN-challenge im-
ages). This is also consistent with a previous study (Liao and
Poggio, 2016) where it was shown that a shallow recurrent
neural network (RNN) is equivalent to a very deep CNN (e.g.
ResNet) with weight sharing among the layers. Therefore,
we speculate that what the computer vision community has
achieved by stacking more layers into the CNNs, is a partial
approximation of something that is more efficiently built into
the primate brain architecture in the form of recurrent circuits.
That is, during core (∼200 ms) object recognition, recurrent
computations act as additional non-linear transformations of
the initial feedforward IT response, to produce more explicit
(linearly separable) solutions. This provides a qualitative ex-
planation for the requirement of recurrent circuits during a
variety of challenging image conditions, the purpose of which
is to achieve a more explicit object representation at the level
of IT. What is now needed are new recurrent artificial neural
networks (ANNs) that successfully incorporate these ideas.
While the data presented here cannot fully specify the form of
those ANNs, they will provide a strong check on any model
that aims to succeed in these more advanced vision challenges
where primates still outperform machines.
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METHODS

Subjects. The nonhuman subjects in our experiments were two adult
male rhesus monkeys (Macaca mulatta). All human studies were
done in accordance with the Massachusetts Institute of Technology
Committee on the Use of Humans as Experimental Subjects. A
total of 88 observers participated in the binary match to sample
object discrimination task. Observers completed these 20-25 min
tasks through Amazon’s Mechanical Turk, an online platform in
which subjects can complete experiments for a small payment.

Visual stimuli: generation.

Generation of synthetic (“naturalistic”) images. High-quality images
of single objects were generated using free ray-tracing software
(http://www.povray.org), similar to Majaj et al. (2015). Each
image consisted of a 2D projection of a 3D model (purchased from
Dosch Design and TurboSquid) added to a random background.
The ten objects chosen were bear, elephant, face, apple, car, dog,
chair, plane, bird and zebra (Figure 1B). By varying six viewing
parameters, we explored three types of identity while preserving
object variation, position (x and y), rotation (x, y, and z), and size.
All images were achromatic with a native resolution of 256 × 256
pixels (see Figure 1D, and Figure S1A for example images).

Generation of natural images (photographs). Images pertaining to
the 10 nouns, were download from http://cocodataset.org. Each
image was resized to 256 x 256 x3 pixel size and presented within
the central 8 deg. We used the same images while testing the
feedforward DCNNs.

Quantification of image properties. We have compared the ability of
different image properties to predict the putative recurrence signal,
inferred from our results. These image properties were either pre-
defined during the image generation process (e.g. object size, object
eccentricity, and the object rotation vectors, presence of an object
occluder) or computed after the image generation procedure. The
post image generation properties are listed below:

Image contrast: This was defined as the variance of the luminance
distribution per image (grayscale images only).

Image blur: The image processing literature contains multiple
measures of image focus based on first order differentiation or
smoothing followed by differentiation. We have used a technique
from Santos et al. (1997) to define the focus of an image.

Image clutter: This measure (Feature Congestion) of visual
clutter is related to the local variability in certain key features, e.g.,
color, contrast, and orientation (Rosenholtz et al., 2007).

Primate behavioral testing.

Humans tested on amazon mechanical turk. We measured human be-
havior (from 88 subjects) using the online Amazon MTurk platform
which enables efficient collection of large-scale psychophysical data
from crowd-sourced “human intelligence tasks” (HITs). The reliabil-
ity of the online MTurk platform has been validated by comparing
results obtained from online and in-lab psychophysical experiments
(Majaj et al., 2015; Rajalingham et al., 2015). Each trial started
with a 100 ms presentation of the sample image (one our of 1320
images). This was followed by a blank gray screen for 100 ms;
followed by a choice screen with the target and distractor objects
(similar to Rajalingham et al., 2018). The subjects indicated their
choice by touching the screen or clicking the mouse over the target
object. Each subjects saw an image only once. We collected the
data such that, there were 80 unique subject responses per image,
with varied distractor objects.

Monkeys tested during simultaneous electrophysiology. Active bi-
nary object discrimination task We measured monkey behavior
from two male rhesus macaques. Images were presented on a 24-inch
LCD monitor (1920 × 1080 at 60 Hz) positioned 42.5 cm in front
of the animal. Monkeys were head fixed. Monkeys fixated a white
square dot (0.2°) for 300 ms to initiate a trial. The trial started
with the presentation of a sample image (from a set of 1320 images)
for 100 ms. This was followed by a blank gray screen for 100 ms,
after which the choice screen containing a target and a distractor
object was shown. The monkey was allowed to view freely the choice

images for up to 1500 ms and indicated its final choice by holding
fixation over the selected image for 400 ms. Trials were aborted if
gaze was not held within ±2° of the central fixation dot during any
point until the choice screen was shown.

Passive Viewing During the passive viewing task, monkeys
fixated a white square dot (0.2°) for 300 ms to initiate a trial. We
then presented a sequence of 5 to 10 images, each ON for 100 ms
followed by a 100 ms gray blank screen. This was followed by a
water reward and an inter trial interval of 500 ms, followed by the
next sequence. Trials were aborted if gaze was not held within ±2°
of the central fixation dot during any point.

Behavioral Metrics. We have used the same one-vs-all image level
behavioral performance metric (I1) to quantify the performance
of the humans, monkeys, deep HCNNs and neural based decoding
models for the binary match sample tasks. This metric estimates
the overall discriminability of each image containing a specific target
object from all other objects (pooling across all 9 possible distractor
choices). For example, given an image of object ‘i’, and all distractor
objects (j 6= i) we first compute the average hit rate,

HitRatei
image =

∑10
j=1 Pc

i,j 6=i
image

9
[1]

where Pc refers to the fraction of correct responses for the binary
task between objects ‘i’ and ‘j’. We then compute the false alarm
rate for the object ‘i’ as,

FalseAlarmi = 1− avg(HitRatej 6=i
image) [2]

The unbiased behavioral performance, per image, was then com-
puted using a sensitivity index d′,

d′image = z(HitRatei
image)− z(FalseAlarmi) [3]

, where z is the inverse of the cumulative Gaussian distribution.
The values of d′ were bounded between -5 and 5. Given the size of
our image-set, the vector contains 1320 independent values.

Large scale multielectrode recordings and simultaneous behavioral
recording.

Surgical implant of chronic micro-electrode arrays. Before training,
we surgically implanted each monkey with a head post under aseptic
conditions. After behavioral training, we recorded neural activity
using 10 × 10 micro-electrode arrays (Utah arrays; Blackrock Mi-
crosystems). A total of 96 electrodes were connected per array.
Each electrode was 1.5 mm long and the distance between adjacent
electrodes was 400 um. Before recording, we implanted each monkey
multiple Utah arrays in the IT cortex ( monkey M: 3 arrays in right
hemisphere and two in the left hemisphere; monkey N: 3 arrays in
the left hemisphere and 2 arrays in the right hemisphere). Array
placement was guided by the sulcus pattern, which was visible dur-
ing surgery. The electrodes were accessed through a percutaneous
connector that allowed simultaneous recording from all 96 electrodes
from each array. All behavioral training and testing was performed
using standard operant conditioning (water reward), head stabi-
lization, and real-time video eye tracking. All surgical and animal
procedures were performed in accordance with National Institutes
of Health guidelines and the Massachusetts Institute of Technology
Committee on Animal Care.

Eye Tracking. We monitored eye movements using video eye tracking
(SR Research EyeLink 1000). Using operant conditioning and water
reward, our 2 subjects were trained to fixate a central white square
(0.2°) within a square fixation window that ranged from ±2°. At the
start of each behavioral session, monkeys performed an eye-tracking
calibration task by making a saccade to a range of spatial targets
and maintaining fixation for 500 ms. Calibration was repeated if
drift was noticed over the course of the session.

Electrophysiological Recording. During each recording session,
band-pass filtered (0.1 Hz to 10 kHz) neural activity was recorded
continuously at a sampling rate of 20 kHz using Intan Recording
Controller (Intan Technologies, LLC). The majority of the data
presented here were based on multiunit activity. We detected the
multiunit spikes after the raw data was collected. A multiunit spike
event was defined as the threshold crossing when voltage (falling
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edge) deviated by less than three times the standard deviation of the
raw voltage values . Of 960 implanted electrodes, five arrays (com-
bined across the two hemispheres) × 96 electrodes × two monkeys,
we focused on the 424 most visually driven, selective and reliable
neural sites. Our array placements allowed us to sample neural
sites from different parts of IT, along the posterior to anterior axis.
However, for all the analyses, we did not consider the specific spatial
location of the site, and treated each site as a random sample from
a pooled IT population.

Neural recording quality metrics per site. Visual drive per neuron
(d′visual): We estimated the overall visual drive for each electrode.
This metric was estimated by comparing the COCO image responses
of each site to a blank (gray screen) response.

d′visual =
avg(Rcoco)− avg(Rgray)√

1
2 (σ2

Rcoco
+ σ2

Rgray
)

[4]

Image rank-order response reliability per neural site (ρIRO
site ):

To estimate the reliability of the responses per site, we computed
a spearman-brown corrected, split half (trial-based) correlation
between the rank order of the image responses (all images).

Selectivity per neural site: For each site, we measured selectivity
as the d’ for separating that site’s best (highest response-driving)
stimulus from its worst (lowest response-driving) stimulus. d′ was
computed by comparing the response mean of the site over all trials
on the best stimulus as compared to the response mean of the
site over all trials on the worst stimulus, and normalized by the
square-root of the mean of the variances of the sites on the two
stimuli:

selectivityi =
mean(~bi)−mean( ~wi)√

var( ~bi)+var( ~wi)
2

[5]

where ~bi is the vector of responses of site i to its best stimulus
over all trials and ~wi is the vector of responses of site i to its worst
stimulus. We computed this number in a cross-validated fashion,
picking the best and worst stimulus on a subset of trials and then
computing the selectivity measure on a separate set of trials, and
averaging the selectivity value of 50 trial splits.

Inclusion criterion for neural sites: For our analyses, we only
included the neural recording sites that had an overall significant
visual drive (d′visual), an image rank order response reliability
(ρIRO

site ) that was greater than 0.6 and a selectivity score that was
greater than 1. Given that most of our neural metrics are corrected
by the estimated noise at each neural site, the criterion for selection
of neural sites is not that critical, and it was mostly done to reduce
computation time by eliminating noisy recordings.

Population Neural response latency estimation. Onset latencies
(tonset) were determined as the earliest time from sample image
onset when the firing rates of neurons were higher than one-tenth of
the peak of its response. We averaged the latencies estimated across
individual neural sites to compute the population latency. Peak
latencies (tpeak) were estimated as the time of maximum response
(firing rate) of a neural site in response to an image. We averaged
the peak latencies estimated across individual neural sites to com-
pute the population peak latency per image. Both of these latency
measures were computed across different sets of images (control and
challenge) as mentioned in the article.

Estimation of solution for object identity per image.

IT cortex. To estimate what information downstream neurons could
easily “read” from a given IT neural population, we used a simple,
biologically plausible linear decoder (i.e., linear classifiers), that has
been previously shown to link IT population activity and primate
behavior (Majaj et al., 2015). Such decoders are simple in that
they can perform binary classifications by computing weighted
sums (each weight is analogous to the strength of synapse) of input
features and separate the outputs based on a decision boundary
(analogous to a neuron’s spiking threshold). Here we have used a
support vector machine (SVM) algorithm with linear kernels. The
SVM learning model generates a decoder with a decision boundary

that is optimized to best separate images of the target object
from images of the distractor objects. The optimization is done
under a regularization constraint that limits the complexity of the
boundary. We used L2 regularization (strength of regularization, λ
was optimized for each train-set) and a stochastic gradient descent
solver to estimate 10 (one for each object) one-vs-all classifiers.
After training each of these classifiers with a set of 100 training
images per object, we generated a class score (sc) per classifier
for all held out test images. We then converted the class scores
into probabilities by passing them through a softmax (normalized
exponential) function.

P i
image =

esci∑10
i=1 e

sci

[6]

We then computed the binary task performances, by calculating
the percent correct score for each pair of possible binary task given
an image. For instance, if an image was from object i, then the
percent correct score for the binary task between object i and object
j , was computed as,

Pri,j
image =

P i
image

P i
image + P j

image

[7]

From each percent correct score, we then estimated a neural I1
score (per image), following the same procedures as the behavioral
metric.

Object solution time per image in IT (OSTimage). Object solution
time per image, OSTimage was defined as the time it takes for
linear IT population decodes to reach within the error margins of
the pooled monkey behavioral I1 score for that image. In order
to estimate this time, we first computed a neural I1 vector for
non-overlapping 10 ms time bins post the sample image onset. We
then used linear interpolation to predict the value of the I1 vector
per image at any given time between 0 and 250 ms. We then used
the Levenberg-Marquardt algorithm to estimated the time at which
the neural I1 vector reached the error margins of the pooled monkey
behavioral I1.

Deep Convolutional Neural Networks (DCNN). Binary object dis-
crimination tasks with DCNNs

We used the same linear decoding scheme mentioned above for
estimating the object solution strengths per image for the DCNNs.
This essentially involves replacing the IT neural population features
(as mentioned above) with the respective image-evoked DCNN
model (e.g. AlexNet ‘fc7’ layer) features. The rest of the procedure
remained the same. The features extracted from each of the models
were then projected onto the first 1000 principle components (ranked
in the order of variance explained) to construct the final feature set
used. This was done to overcome large feature set sizes.

Prediction of neural response from DCNN features Wemod-
eled each IT neural site as a linear combination of the DCNN model
features. We first extracted the features per image, from the DC-
NNs’ penultimate layers. The features extracted were then projected
onto its first 1000 principle components (ranked in the order of
variance explained) to construct the final feature set used. For
example, we used the features from AlexNet’s (Krizhevsky et al.,
2012) ‘fc7’ layer to generate Fig 4A. Using a 50%/50% train/test
split of the images, we then estimated the regression weights (i.e how
we can linearly combine the model features to predict the neural
site’s responses) using a partial least squares (MATLAB command:
plsregress) regression procedure, using 20 retained components. For
each set of regression weights estimated on a train imageset, we
generated the output of that ‘synthetic neuron’ for the held out
test set. The percentage of explained variance, IT predictivity (for
details refer Yamins et al., 2014) for that neural site, was then
computed by normalizing the r2 prediction value for that site by
the self-consistency of the image responses for that site and the
self-consistency of the regression weights for that site (estimated by
a Spearman Brown corrected trial split correlation score).

Estimation of the OST prediction strength. We compared how well
different factors and ∆d′ between monkey behavior and AlexNet
‘fc7’, predicted the differences in the object solution time (OST)
estimates. Each image has an associated value for different image
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properties, either categorical e.g. occcluded/non-occluded or con-
tinuous e.g. object size etc. We first divided the image sets into
two groups, high and low, for each factor. The high group for each
factor contained images with values higher than 95th percentile of
the factor distribution, and the low group contained the ones with
values less than 5th percentile of the distribution. For the cate-
gorical factor like occlusion, the high group contained images with
occlusion and the low group contained images without occlusion.
Then, for each factor we performed a one-way ANOVA with object
solution time as the dependent variable. The rationale behind this
test was if the experimenter(s) were to create image sets based on
any one of these factor, how likely is it expose a large difference
between the OST values. Therefore, we used the F-value of the test
(y-axis in Fig 6A) to quantify the OST prediction strength.
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SUPPLEMENTARY MATERIALS

The following figures have been referenced in the main article.
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Fig. S1. A) Examples of different image types used in the behavioral testing. Differ-
ent image types included synthetic images containing an object in an uncorrelated
background, images with blurr, small object sizes, occlussion, incomplete objects,
deformed objects, cluttered scenes, fused objects, and natural photographs. B)
Comparison of pooled monkey behavioral performance and three DCNN models with
similar architecture, VGG-S (Chatfield et al., 2014; Sermanet et al., 2013), NYU (Zeiler
and Fergus 2014), and AlexNet (Krizhevsky et al., 2012).
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Fig. S2. Comparison of human performance (data pooled across 88
human subjects) and DCNN performance (AlexNet; ‘fc7’ Krizhevsky
et al. 2012). Each dot represents the behavioral task performance
(I1; refer Methods) for a single image. We reliably identified challenge
(red dots) and control (blue dots) images. Error bars are bootstrapped
s.e.m.
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Fig. S3. Object by object comparison of pooled monkey performance (data pooled across 2 monkeys) and DCNN performance (AlexNet; ‘fc7’ Krizhevsky et al. 2012). Each dot
represents the behavioral task performance (I1; refer Methods) for a single image of the corresponding object. We reliably identified challenge (red dots) and control (blue dots)
images. Error bars are bootstrapped s.e.m.
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Fig. S4. A) Dependence of OST on the pooled monkey I1 level. The red and the blue curves show the OST values averaged across images with behavioral I1 accuracy
within the limits shown on the x-axis, for challenge and control images respectively. B) Comparison of the onset latencies (tonset) per neuron, between the challenge (y-axis)
and control (x-axis) images avergaed across images of each group. Horizontal and vertical errorbars denotes s.e.m across images. C) Examples of two images, before and
after the SHINE (Spectrum, histogram, and intensity normalization and equalization) algorithm was implemented. D) nAverage IT population decodes over time after the SHINE
technique was implemented, for the control (blue) and challenge (red) images. The errorbars denote s.e.m across images. The black line indicates the average behavioral I1
for the pooled monkey population across all images. The gray shaded region indicates the standard deviation of the behavioral I1 for the pooled monkey population across all
images
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Fig. S5. Predicting IT neural responses with DCNN features. Schematic of the DCNN neural fitting and prediction testing procedure. This includes three main steps. Data
collection: neural responses are collected for each of the 1320 images (∼50 repetitions), e.g. shown is that of neural site 3, across 10 ms timebins. Mapping: We divide the
images and the corresponding neural features (RTRAIN) into a 50-50 train-test split. For the train images, we compute the image evoked activations (FTRAIN) of the DCNN model
from a specific layer. We then use partial least square regression to estimate the set of weights (w) and biases (β) that allows us to best predict RTRAIN from FTRAIN. Test
Predictions: Once we have the best set of weights (w) and biases (β) that linearly map the model features onto the neural responses, we generate the predictions (MPRED)
from this synthetic neuron for the test image evoked activations of the model FTEST. We then compare these predictions with the test image evoked neural features (RTEST) to
compute the IT predictivity of the model.
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Fig. S6. Internal consistency of the IT neural responses
across time. The internal consistency was computed as a
Spearman-Brown corrected correlation between two split
halves (trial based) of each IT neural site’s responses across
all tested images. Errorbar shows s.e.m across neural sites.
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