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a b s t r a c t 

In metastatic castrate resistant prostate cancer (mCRPC), abiraterone is conventionally administered con- 

tinuously at maximal tolerated dose until treatment failure. The majority of patients initially respond well 

to abiraterone but the cancer cells evolve resistance and the cancer progresses within a median time of 

16 months. Incorporating techniques that attempt to delay or prevent the growth of the resistant cancer 

cell phenotype responsible for disease progression have only recently entered the clinical setting. Here 

we use evolutionary game theory to model the evolutionary dynamics of patients with mCRPC subject 

to abiraterone therapy. In evaluating therapy options, we adopt an optimal control theory approach and 

seek the best treatment schedule using nonlinear constrained optimization. We compare patient out- 

comes from standard clinical treatments to those with other treatment objectives, such as maintaining a 

constant total tumor volume or minimizing the fraction of resistant cancer cells within the tumor. Our 

model predicts that continuous high doses of abiraterone as well as other therapies aimed at curing the 

patient result in accelerated competitive release of the resistant phenotype and rapid subsequent tumor 

progression. We find that long term control is achievable using optimized therapy through the restrained 

and judicious application of abiraterone, maintaining its effectiveness while providing acceptable patient 

quality of life. Implementing this strategy will require overcoming psychological and emotional barriers 

in patients and physicians as well as acquisition of a new class of clinical data designed to accurately 

estimate intratumoral eco-evolutionary dynamics during therapy. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Like most late stage cancers, metastatic prostate cancer is usu-

lly incurable. Even when initial therapies successfully decrease

he tumor burden, the patient will eventually succumb to the

isease. Standard cancer therapy conventionally applies drugs at

aximum tolerable dose (MTD) based on the implicit assumption

hat maximizing cancer cell death will result in the best outcome.

hile this “treat to kill” strategy is intuitively appealing, it may be

volutionarily unwise because it leads to strong selection for resis-

ant cell phenotypes by eliminating potentially competing sensitive

ell phenotypes. This concept, termed “competitive release”, where

ne of two species competing for the same resource disappears

hereby allowing the remaining competitor to utilize the resource
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ore fully than it could in the presence of the first species, is well-

escribed in other evolutionary settings such as ecology and pest-

anagement ( Connell, 1961; Zeilinger et al., 2016 ). 

Evolutionary approaches used in these other fields, particularly

est management, accept that complete eradication of an unde-

ired species is not always possible. Similarly, in common dissemi-

ated cancers (such as prostate, lung, breast, colorectal, pancreatic

tc.), decades of clinical observations have clearly demonstrated

hat a cure, with currently used therapies, is not possible. For these

ancers the goal of cancer treatment should shift to its long term

ontrol, essentially turning cancer into a chronic disease ( Enriquez-

avas et al., 2016 ). Adaptive therapy is one method implement-

ng this treatment philosophy explicitly integrating principles from

cology and evolution by actively modulating therapy during treat-

ent. Treatment is applied to control the cancer cell population

ensitive to drug and judiciously removed to let the remaining sen-

itive cell population suppress the proliferation of the resistant cell

opulation. 

https://doi.org/10.1016/j.jtbi.2018.09.022
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jtb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2018.09.022&domain=pdf
mailto:jessica.cunningham@maastrichtuniversity.nl
https://doi.org/10.1016/j.jtbi.2018.09.022
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Here we will focus on treatment of metastatic prostate can-

cer (mPC). The majority of mPC cancer cells at the time of ini-

tial diagnosis require systemic testosterone for survival and pro-

liferation. We designate these cells T + . Upon diagnosis, androgen

deprivation therapy (ADT) is used as a means of chemical cas-

tration providing an initially effective means of reducing the tu-

mor burden of these T + cells. However, under continued ADT, the

tumor begins to grow again within 1 to 3 years as the tumor

cells evolve resistance. This leads to metastatic castrate resistant

prostate cancer (mCRPC). Two resistant cell phenotypes are typi-

cally found in mCRPC tumors. Some cells evolve mutations in the

androgen receptor (AR) itself and downstream variations in AR sig-

naling that allow proliferation completely independent of testos-

terone. We designate these androgen-independent cells as T −. Al-

ternatively, some cells upregulate CYP 17 α which allows the can-

cer cells to synthesize testosterone through a cholesterol path-

way involving an auto-stimulatory loop. These testosterone pro-

ducing cells (designated T P ) can secrete enough testosterone to

bring intra-tumoral levels of testosterone within functional pre-

DT levels ( Mohler et al., 2004; Montgomery et al., 2008 ). As a

result, the locally supplied testosterone from T P cells can support

the proliferation of T + cells despite continued ADT. 

Abiraterone, an inhibitor of CYP 17 α, was developed to provide a

therapy for mCRPC by inhibiting the residual production of testos-

terone in the adrenal cortex as well as the T P cells production

of testosterone. As ADT treatment is continued during abiraterone

therapy, the further reduction of testosterone by abiraterone sup-

presses both the T P and T + cells. Continuous therapy with abi-

raterone as standard of care often provides a sharp reduction in

tumor burden and a period of remission by presumably eliminat-

ing both the T + and T P tumor cell populations. With a median

time of 16 - 17 months, abiraterone therapy fails, tumor burdens

increase, and patients again experience tumor growth. The elimi-

nation of the T + and T P cells releases the T − cells from competi-

tion for space and resources allowing them to proliferate freely. No

targeted therapies exist for these T − cells and cytotoxic chemother-

apies become the only late stage option until further disease pro-

gression and eventual patient death. 

An adaptive therapy in mCRPC would aim to delay or com-

pletely prevent the competitive release of the T − cells while main-

taining an acceptably low tumor burden. In support of the feasibil-

ity of such a goal, a recent preliminary trial significantly prolonged

the time to progression of mCRPC by giving abiraterone until the

prostate specific antigen, known as PSA (surrogate for tumor bur-

den), dropped to below 50% of its starting level, and then removing

therapy until PSA returned to the pre-treatment level. The adaptive

treatment schedule was supported by a game-theoretic model of

mCRPC that considered the eco-evolutionary dynamics and inter-

actions of the three cell types discussed above ( Zhang et al., 2017 ).

Both the clinical trial and the mathematical model showed that

evolution-based therapies can significantly prolong time to pro-

gression while reducing cumulative dose when compared to cur-

rent standard of care. The initial success in theory and in practice

invites an exploration of more sophisticated time-dependent ap-

plications of abiraterone. It is likely that there are significant op-

portunities to further improve the outcomes with sufficient under-

standing of the underlying dynamics of cancer cells. 

Here we start with the model of Zhang et al. (2017) and

frame it as an optimal control problem. Optimal control for time-

dependent problems involves recognizing dynamic state variables

(for our model these will be the population sizes and frequencies

of the T + , T P and T − cells), an objective (i.e. tumor size) and a

control that can be varied in time (treatment dose schedule). Opti-

mization techniques can isolate values of the control which min-

imizes the objective over some fixed or varied time horizon of

the model. The majority of past optimal control models of can-
er therapy define the objective as minimizing total tumor vol-

me following the standard goal of “treat to cure”. Swan and Vin-

ent (1977) and Swan (1980, 1988) provide the first applications of

ptimal control theory to treating cancer. Optimal control theory

as since been used to investigate cytotoxic chemotherapies, cell

ycle chemotherapies, radiotherapy, and immunotherapies ( Ainseba

nd Benosman, 2010; Benzekry and Hahnfeldt, 2013; Cappuccio

t al., 2007; Castiglione and Piccoli, 2006; 2007; Coldman and

urray, 20 0 0; Ghaffari and Naserifar, 2010; Kim et al., 2014;

edzewicz et al., 2012; Ledzewicz and Schaettler, 2016; Ledzewicz

nd Schattler, 20 04; 20 05; 20 08; Murray, 1990a; 1990b; Nanda

t al., 2007; Swierniak and Smieja, 2005; Villasana et al., 2010;

hu et al., 2015 ). There are also optimal control studies in prostate

ancer focusing on the optimal schedule of ADT ( Hirata and Ai-

ara, 2015; Hirata et al., 2018 ). Engelhart (2011) and others have

mphasized the importance of selecting the objective more care-

ully ( Carrere, 2017; Engelhart et al., 2011; Hadjiandreou and Mit-

is, 2014 ). Since we know that the “treat to cure” objective may be

nfeasible, in this paper we specifically explore alternative objec-

ives with the goal of long-term tumor control. 

First, we model continuous abiraterone therapy based on the

linical standard of care using maximum tolerable dose. Second,

rom the Zhang clinical trial, we know that the adaptive therapy

as effective with as little as 20% of maximal dose. With this in

ind, we determine the optimal control therapy by minimizing

otal tumor density using only 20% of the cumulative total abi-

aterone dose. Third, we consider the optimal dose schedule when

he therapy objective is to minimize the variance of tumor bur-

en over some time horizon. Gatenby (2009) showed the effec-

iveness of this objective in maintaining long term tumor control

n an in-vivo experiment using carboplatin on OVCAR xenographs

n mice ( Gatenby et al., 2009 ). Lastly, we consider the objective of

irectly controlling the T − cell population by preventing competi-

ive release. Under this control algorithm, the goal is to minimize

he population density of the T − cells over the course of therapy.

inally, we discuss the clinical implications of these different op-

imal control treatments and the patient information needed for

linically implementing and evaluating our model ′ s predictions. 

. Tumor growth model 

We extend the model from Zhang et al. (2017) and consider

CRPC as an evolutionary game. Evolutionary game models of

ancer can include both the ecological and evolutionary conse-

uences of therapy and they can suggest evolutionarily enlightened

herapies ( Altrock et al., 2015; Basanta and Anderson, 2018; Bas-

nta et al., 2012; Bayer et al., 2018; Brown, 2016; Gatenby, 2009;

atenby et al., 2009; Gatenby and Vincent, 2003; Gupta et al.,

015; Kam et al., 2014; Silva et al., 2012; Tomlinson, 1997 ). For

CRPC, the evolutionary game is played among cancer cells pos-

essing different strategies that influence the production of and

eed for testosterone. We consider three types of cancer cells as

layers in mCRPC: 

• T + cells requiring exogenous androgen; 
• T P cells expressing 17 α-hydroxy/17,20-lyase (CYP17 α) and pro-

ducing testosterone; and 

• T − cells that are androgen-independent. 

.1. Initial Lotka–Volterra model 

We use a model inspired by Lotka–Volterra (LV) competition

quations to describe the interactions between T + , T P and T − cell

ypes, i ∈ T = { T + , T P , T −} . The LV equations require parameteriza-

ion of growth rates, r i , carrying capacities, K i , and competition co-

fficients, αij , comprising a 3 × 3 competition matrix A = 

(
αi j 

)
. We
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Fig. 1. Non-Optimized Treatment Schedules. Panel (a) shows standard of care with the maximum tolerable dose applied at each subinterval, with a cumulative dose of 25. 

Panel (b) shows 20% dose with a cumulative dose of 5. The remaining four panels (c)–(f) show the metronomic therapies, each with the cumulative dose of 5: (c) low 

frequency - high amplitude metronomic therapy with induction, (d) high frequency - low amplitude metronomic therapy with induction, (e) low frequency - high amplitude 

metronomic therapy without induction, and (f) high frequency - low amplitude metronomic therapy without induction. 
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an describe the instantaneous rate of change in the population

ize of cancer cell types i ∈ T , ˙ y i = 

d y i 
d t 

as 

˙ 
 i = r i y i 

⎛ 

⎝ 1 −

∑ 

j∈T 
αi j y j 

K i 

⎞ 

⎠ . (1) 

.2. Parameter estimation 

.2.1. Growth rates 

We derived the growth rates of the three subpopulations in

1) from the measured doubling times of representative cell lines.

he LNCaP cell line (ATCC@CRL-1740) is representative of T + cells

s they are androgen dependent. LNCaP cells have a measured dou-

ling time of 60 hours. The T P growth rate is based off the H295R

ell line (ATCC@CRL-2128), with a doubling time of 48 hours. Fi-

ally, we base the T − growth rate is based on the PC-3 cell line,

ith a doubling time of 25 hours. From these doubling times the

rowth rates of the T + , T P , and T − cells would be 0.27726, 0.34657,

nd 0.66542, respectively. These cell line derived growth rates

units of per day ) are unlikely to be biologically feasible within

 tumor environment with limited resources. We therefore scale

hese growth rates to r T + = 2 . 7726 · 10 −3 , r T P = 3 . 4657 · 10 −3 , and

 T − = 6 . 6542 · 10 −3 for our model. Scaling the growth rates does

ot affect the steady states/evolutionarily stable states of the un-

erlying evolutionary game, as r i in (1) is scalable. 

.3. Carrying capacities without abiraterone treatment 

The carrying capacity of the T + cell population derives entirely

rom utilizing the endogenous testosterone produced by the T P 

ells as the majority of the exogenous testosterone provided by the

ody has been removed by continuous ADT. Therefore, we assume

hat the carrying capacity of T + is a linear function of the density

f T P cells as defined by K T + = μ · y T P . While the exact value of T + 

ells that can be symbiotically supported by the androgens created
y T P cells is unknown, its value above one accounts for the fact

hat the T P cells incur the cost of producing the androgens while

he T + cells require no resources to obtain the needed androgens.

n this way, we set the symbiosis coefficient μ to μ = 1 . 5 . 

As in Zhang et al. (2017) we set the carrying capacities of T P 

nd T − cells in the absence of abiraterone to K T P = K T − = 10 0 0 0 . 

.4. Carrying capacities with abiraterone treatment 

Therapies can be modeled in Lotka-Volterra models of tumor

rowth in multiple ways. For example, a chemotherapy will al-

er the growth rates r i , hormonal or targeted therapies will alter

arrying capacities K i , and cytotoxic therapies will introduce an

dditional mortality term. Experimental evidence shows that abi-

aterone does not act as a chemotherapy nor a cytotoxic therapy

n prostate cancer cell lines ( Grossebrummel et al., 2016 ). In this

ay, consistent with Zhang et al. (2017) , abiraterone therapy re-

uces the ability of T + and T P cells to acquire an essential resource,

estosterone, and is modeled as a direct reduction in the carrying

apacity of T P and indirectly that of T + . 
The abiraterone dose during a control region �( t ) ∈ [0, 1] equals

o 0 if no drug is given at time t and equals to 1 if the maximum

olerable dose is applied. Abiraterone affects the cells in two ways.

irstly, abiraterone treatment diminishes the T P cells ability to fully

tilize the CYP17 α pathway to convert cholesterol into androgens.

herefore, in our model the carrying capacity of T P is significantly

ecreased to K T P = 100 when abiraterone is administered at full

ose. To allow for intermediate doses of abiraterone, we assume

he following relationship between K T P and dose: 

 T P (t) = −9900�(t) + 10 0 0 0 (2) 

Secondly, because abiraterone inhibits the production of testos-

erone from T P cells, the T + cells that are symbiotically supported

y the androgens created by T P cells are affected. In this way, the

ymbiosis coefficient μ is lowered linearly to a minimum value

f 0.5 as abiraterone dose increases to the maximum tolerable
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Table 1 

Coefficients for fitness matrix A . 

coefficient values 

α12 α13 α21 α23 α31 α32 Group 

0.7 0.8 0.4 0.5 0.6 0.9 Best responder 

0.7 0.8 0.4 0.6 0.5 0.9 Responder 

0.7 0.9 0.4 0.6 0.5 0.8 Non responder 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Initial population densities. 

Initial population densities 

y T + (0) y T P (0) y T − (0) Group 

606.06 757.58 1 . 94 · 10 −10 Best Responder 

560.36 747.59 47.10 Responder 

319.63 707.76 273.97 Non Responder 
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dose: 

μ(t) = −�(t) + 1 . 5 . (3)

2.5. Competition coefficients 

The matrix of competition coefficients defines the interactions

between the three cell types and characterizes the payoff in-

teractions within the evolutionary game. The values of αij are

qualitative approximations where each competition coefficient de-

scribes the effect of type j cells on the growth rate of type i

cells. The intra-cell type coefficients are set to αii = 1 . The rela-

tive values of the remaining coefficients are derived from litera-

ture and professional judgment of prostate oncologists. T + cells

with no exogenous testosterone are in general the least competi-

tive cell type, and the competitive effect of T − cells is stronger on

T P cells than on T + cells. These two principles lead to the follow-

ing series of inequalities: α31 > α21 , α32 > α12 , α13 > α23 , α13 > α12 ,

α23 > α21 , and α32 > α31 . As in both Zhang et al. (2017) and

You et al. (2017) we assume the inter-cell type coefficients have

values from the set {0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. Using these values,

there are 22 biologically plausible matrices that satisfy the above

inequalities. Based on the frequencies of T − at the equilibrium, we

can divide these 22 simulated patients into one of three categories:

best responders, responders, and non-responders. Here we choose

one matrix from each category to analyze in detail as shown in

Table 1 . 

2.6. Linear stability analysis of the model with K T P ∈ [0 , 10 0 0 0] 

While the population dynamics of our evolutionary game be-

tween cancer cells defined by (1) superficially resembles Lotka–

Volterra competition equations, the symbiotic relationship between

the T P and T + cells significantly changes the structure of the sys-

tem. If one only considers tumors with T P and T − cells or T + and

T P cells then the dynamics and their stability properties match the

2-species Lotka-Volterra competition equations. When considering

a tumor with just T + and T P cells, the T P cells experience com-

petition from the T + cells in accord with the matrix of competi-

tion coefficients. However, the net interaction effect of T P on T + is

the difference between the symbiosis and competition coefficients.

Since the symbiosis coefficient μ has been set to 1.5, and the com-

petition coefficients are always less than one, the net effect of T P 

on T + is positive. Furthermore, 
˙ y T + 

y T + 
is the interaction coefficient

that gives the effect of changing the population size of T P on the

population growth rate of T + . In the standard Lotka-Volterra equa-

tions these interaction coefficients are negative and independent

of population sizes. In our model, all of the interaction coefficients

but the one describing the effects of T P on T + are negative and in-

dependent of the cancer cells population sizes. The effect of y T P on
d y T + 

d t 
is positive (reflecting the public good provided by T P to T + )

and the magnitude of this effect declines with y T P . Moreover, in

the standard Lotka-Volterra equations, carrying capacities are con-

stant and independent of species populations sizes. The positive

and density-dependent interaction coefficients of T P on T + signifi-

cantly change the underlying dynamics and stability of the system

from that of standard Lotka-Volterra models. 
To illustrate this, we performed the linear stability analysis

or all three representative matrices with respect to the value of

 T P ∈ [0 , 10 0 0 0] . In all three cases, for K T P between 0 and a certain

hreshold the stable steady point which coincides with the attrac-

or of the dynamics of our extended Lotka–Volterra model contains

nly T − cells. Increasing K T P results in a stable steady point which

ncludes both T P and T − cells. Increasing K T P further results in the

table steady point including all three types of cells. Interestingly,

or the best responder case only, relatively close to the carrying

apacity of T P cells a steady point exists where only T + and T P 

ells are present. This stability analysis illustrates how abiraterone

reatment (which reduces the T P carrying capacity) can push the

ystem defined by (1) towards competitive release of T −. A full sta-

ility analysis is included in S2. 

. Implementation 

All simulations were performed in Matlab as follows: The sys-

em of differential equations in ( 1 ) was discretized using the 4th

rder Runge-Kutta method. The maximum time of simulation was

et to t f = 30 0 0 [days] with 60 0 0 discretization steps. The time

orizon [0, 30 0 0] was divided into 25 subintervals each with 120

imulated days (240 discretized steps). This simulates the time

etween patient clinical visits where changes to treatment can

e made. Within each interval between clinical visits, abiraterone

ose is held constant. Within a subinterval, the dose of abiraterone

ould take on a value of �∈ [0, 1]. Abiraterone naive tumor growth

here no abiraterone is given is modeled where � = 0 for all

ubintervals. This naive tumor growth is used to set the initial pop-

lation densities for each representative patient shown in Table 2

See S1 for detailed explanation). The growth rates and carrying

apacities are set to values discussed in Section 2.2 . 

Six predetermined treatment schedules that are typically used

n the clinic are analyzed to compare against novel optimized

reatment schedules (see Fig. 1 ). First, clinical standard of care

aximum tolerable dose is modeled where � = 1 for all subinter-

als resulting in a cumulative dose of 25. We constrain all remain-

ng predetermined treatment schedules and optimized treatment

chedules to have a cumulative dose of 5 (20% maximum tolerable

ose). This allows comparisons between treatment schedules to be

ased on changes in distribution of a predetermined cumulative

ose instead of changes of the dose itself. 

Second, we modeled a constant 20% of maximum dose ( � =
 . 2 for all subintervals.) The value of � affects carrying capaci-

ies within the subinterval as described in Eqs. (2) and ( 3 ). When

(t) = 0 . 2 , the carrying capacity of K T P equals 8020 and the sym-

iotic coefficient equals μ = 1 . 3 . 

The four remaining predetermined schedules are metronomic

nd included combinations of high amplitude/low frequency ver-

us low amplitude/high frequency dosing and no induction period

ersus a 3 subinterval induction period (see Fig. 1 ). These metro-

omic treatment schedules also adhere to the constraint of cumu-

ative dose equal to 5 allowing direct comparison with the other

imulated therapies based on 20% of standard of care. 
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Fig. 2. Cell population dynamics under no abiraterone treatment. In all three cases, the total tumor burden reaches levels where we would expect patient discomfort and 

eventual death. The T − cell population for the best responder patient is initially minimal and does not increase due to competition from T P and T + cells. For the responder 

and non responder patients the frequency of T − cells initially increases but is then decreased due to the inter-cell type competition. These dynamics provide a baseline to 

compare the effects of various Abiraterone treatment schedules. 
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. Optimal control problem 

We formulate a control problem to seek the best distribution of

 cumulative abiraterone dose of 5 to achieve a specific therapy ob-

ective. In this way, the optimization algorithm iterates over vary-

ng distributions of �∈ [0, 1] across the 25 subintervals. To find

he time-dependent optimal dose distribution we used the Matlab

onlinear constrained optimization toolbox ( fmincon ), where 100

ptimization replicates were performed for each of the three pa-

ient cases and each objective. For all optimization replicates the

reatment schedule is initialized with a random dosing schedule

ith a total cumulative dose of 5. The nonlinear optimization al-

orithm keeps this constraint active, while allowing each �( t ) to

ary between 0 and 1. 

The goal is to find �(·) = (�(t)) t∈ [0 ,t f ] that according to the

ollowing three possible objectives for patient care: 

• Minimizing average tumor volume: 

min 

�(·) 
1 

t f 

∫ t f 

0 

∑ 

i ∈T 
y i (t) d t 

• Minimizing tumor mass variance: 

min 

�(·) 
1 

t f 

∫ t f 

0 

(∑ 

i ∈T 
y i (t) −

∑ 

i ∈T 
y i (t) 

)2 

d t 

• Minimizing average T − density: 

min 

�(·) 
1 

t f 

∫ t f 

0 

y T − (t) d t 

. Results 

.1. No treatment 

Fig. 2 shows the population dynamics of each cell type for each

f the three patient categories (interaction matrices) under no abi-

aterone. The total tumor burden grows to levels where we would

xpect patient discomfort and eventual death. The best responder

umor becomes dominated by T + and T P cells as the T − popula-

ion declines towards extinction. The responder patient has a mix

f all three cell subtypes. The non-responder patient shows a tu-

or with only T P and T − cells present. 

.2. Standard of care 

For the best responder patient ( Fig. 3 ), this treatment led to

n apparent cure. During the simulation the density of the tumor

ells appeared negligible. There was however a non-zero cumula-

ive density of T − cells at the end of the simulation ( ≈21.86). This
s approximately 2 · 10 4 times larger than when no abiraterone is

iven ( ≈ 1 . 12 · 10 −4 ). If abiraterone was continued indefinitely, re-

apse would occur as the T − cells would eventually grow to their

arrying capacity. This relapse caused by T − cells occurs more

uickly in the majority of patients as seen with both the respon-

er and non-responder patients. The responder patient ( Fig. 4 ) had

 slightly longer response time than the non-responder patient

 Fig. 5 ) due to the lower initial density of T − cells at the initia-

ion of therapy. In all cases of the model, continuous abiraterone

herapy resulted in a tumor comprised entirely of T − cells. In this

ay, following the initial success of therapy, the rate of treatment

ailure would be determined primarily by the population size of T −

t the onset of therapy (see Table 2 ). 

.3. Standard of care: 20% constant treatment 

20% constant treatment dosing was surprisingly ineffective for

he best responder patient showing strikingly similar results to no

reatment at all (Fig. S1). The best responder resulted in a tumor

omposed entirely of T + and T P cells with an overall burden that

as about 20% less than no therapy. In both the responder and

on-responder patients, the T − cell type became the dominant

ubtype. 

.4. Metronomic low frequency - high amplitude - with induction 

Under this metronomic schedule the best responder patient

aintained a tumor burden comprised mainly of T P cells that in-

reased and decreased in number during the on and off cycling

f abiraterone. This remaining population continually suppressed

he T − population, providing a long-term control not possible with

aximum tolerable dose. In the responder and non-responder pa-

ient the induction period eliminated the T + and T P populations

nd caused the competitive release of T −. Consequently, the sub-

equent drug holidays and doses of abiraterone were ineffective.

n this way, the disease trajectory became nearly equivalent to the

ull dose standard of care treatment schedule. 

.5. Metronomic low frequency - high amplitude - without induction 

Removing the induction period for the best responder again

aintained a tumor burden comprised mainly of T P cells that

ontinually suppressed the T − population. For the responder and

on-responder patients the first two high amplitude doses of abi-

aterone were enough to eliminate the T + and T P cells and the dis-

ase trajectory became nearly equivalent to the full dose standard

f care treatment schedule. 
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Fig. 3. Population dynamics of best responder patient for non optimized treatment schedules. Panels (a)–(f) depict population dynamics for treatments (a)–(f) from Fig. 1 , 

respectively. SOC results in an apparent cure while 20% SOC is relatively ineffective. All metronomic therapies provide tumor control with varying underlying tumor dynamics. 

Fig. 4. Population dynamics of responder patient for non optimized treatment schedules. Panels (a)–(f) depict population dynamics for treatments (a)–(f) from Fig. 1 , 

respectively. SOC of care and metronomic therapies with induction periods result in early competitive release of the T − population. 20% SOC and the metronomic therapies 

without an induction period delay this T − competitive release by preserving a population of T P cells. 
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5.6. Metronomic high frequency - low amplitude - with induction 

This metronomic schedule administered treatment twice as of-

ten but at half the dose of the high amplitude simulations. For the

best responder patient, these lower doses allowed a greater density

of T + and T P cells to remain in the population. While this main-

tained a higher overall tumor burden, the tumor burden is con-

trolled. For the responder and non responder patients, the lower

l  
oses maintained a mix of T P and T − cells and the competitive re-

ease of the T − population was delayed. 

.7. Metronomic high frequency - low amplitude - without induction 

The elimination of the induction period with the high frequency

ow dose metronomic therapy does not demonstrably change the
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Fig. 5. Population dynamics of non responder patient for non optimized treatment schedules. Panels (a)–(f) depict population dynamics for treatments (a)–(f) from Fig. 1 , 

respectively. Similar to the responder patient, SOC of care and metronomic therapies with induction periods result in early competitive release of the T − population. The 

larger initial density of T − cells in this non responder patient leads to an accelerated T − competitive release compared to the responder patient in the 20% SOC and the 

metronomic therapies without an induction period. 

Fig. 6. Optimized results for minimizing total tumor volume on three representative patients. For the best responder patient, the optimized schedule maintains a very small 

total tumor burden comprised mainly of T P cells. Administering abiraterone early in the responder and non responder patients completely eliminate the T + and T P cell types, 

leaving only the T − cell type to contribute to the total tumor volume. 
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m  
rajectory of the disease for any of the three patient types com-

ared to with the induction period. 

ptimization case studies 

We sought the best therapy based on optimal control for

he three different objectives of minimizing total tumor volume

 Fig. 6 ), variance in tumor size ( Fig. 7 ), and the cumulative den-

ity of T − cells ( Fig. 8 ). For all of these cases, the cumulative abi-

aterone dose was constrained to 5 . 
For some of the 100 replicate simulations, the optimal control

lgorithm found different local minima. Except when minimizing

he total tumor variance, the treatment schedules associated with

he local minima involved an on-off bang-bang style controller

here �( t ) equals either 1 or 0. Because of this, we subsequently

nalyzed all possible bang-bang treatment schedules of abiraterone

o find the corresponding minimal objective values. In the follow-

ng section the bang-bang results are shown. When the objective is

inimizing variance in tumor size for responder and non respon-
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Fig. 7. Optimized results for minimizing tumor volume variance on three representative patients. The responder patient shows that minimizing the total tumor volume and 

minimizing the variance require the same treatment schedule (compare to Fig. 6 ). For the responder and non responder patients, once treatment is initiated, the total tumor 

volume is kept constant, resulting in a low tumor variance. While the tumor is a constant size, the underlying composition is changing from a T P dominated tumor to a T −

dominated tumor. 

Fig. 8. Optimized results for minimizing T − density on three representative patients. All three patient types result in the same optimized treatment schedule showing all 

five doses of abiraterone in the last five subintervals. The T − cell density is kept low due to inter-cell type competition. Only when the doses of abiraterone are given do the 

T − cells grow uncontrolled. 
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der patients, the optimal schedule from the minimization solver is

shown ( Fig. 7 ). 

5.8. Optimized treatment schedules for minimizing cumulative tumor 

volume 

By trying to minimize the cumulative population sizes of the

three cell types, the physician is either attempting a “treat to cure”

or to maintain a minimum average tumor burden over the time

horizon ( Fig. 6 ). In all three cases the optimal treatment was bang-

bang. For the best responder patient, the optimized schedule was

the high amplitude - low frequency metronomic therapy with-
ut induction. This was a fascinating result in that giving bursts

f high dose abiraterone is more effective at minimizing total tu-

or volume over time than giving a constant 20% dose. The to-

al tumor burden was only 8.7% that of the 20% consistent stan-

ard of care. For the responder and non-responder patients the

ptimized abiraterone treatment schedule was to give abiraterone

arly and completely eliminate the T + and T P cell types, leaving

nly one cell type to contribute to the total tumor volume. In this

ay, the total tumor volume in both the responder and non re-

ponder patients can only be lowered to the total tumor volume

eached by full 100% standard of care, 4.40 × 10 7 and 4.92 × 10 7 ,

espectively. 



J.J. Cunningham et al. / Journal of Theoretical Biology 459 (2018) 67–78 75 

5

 

v  

m  

s  

v  

F  

r  

f  

a  

s  

t  

z  

c  

i

5

 

u  

c  

f  

o  

w  

a  

t  

r

T

 

l  

t  

t

T  

a

q

T  

o

i

t

T  

s

 

l  

r  

g  

m

c  

a  

t  

t  

n

 

t  

s

Table 3 

Time to competitive release for all patients. 

Treatment schedule Best responder Responder Non responder 

No Treatment > 30 0 0 > 30 0 0 458 

SOC > 30 0 0 203 60 

20% SOC > 30 0 0 2388 410 

LFHA w/Induction > 30 0 0 203 60 

LFHA wo/Induction > 30 0 0 366 60 

HFLA w/Induction > 30 0 0 1319 624 

HFLA wo/Induction > 30 0 0 1461 391 

Volume > 30 0 0 203 60 

Variance > 30 0 0 1950 458 

T- > 30 0 0 2416 2402 
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.9. Minimizing tumor variance 

Fig. 7 shows the optimal control therapy for minimizing the

ariance of tumor burden over the time of simulation. The opti-

ized treatment schedule for minimizing variance in the best re-

ponder patient was the same as minimizing cumulative tumor

olume ( Fig. 6 ), as minimizing the volume minimizes the variance.

or the responder and non responder cases, the optimal controller

esulted in intermediate levels of dosing. Since there is no target

or overall tumor burden, the treatment schedule delayed giving

ny treatment until the tumor had grown from the initial tumor

ize to approximately 10,0 0 0. Then, low doses were given to main-

ain a constant tumor volume for the remainder of the time hori-

on. The objective resulted in a constant tumor volume, even as

ompetitive release of the T − cells occurred during treatment, sim-

lar to the high frequency low dose metronomic therapy. 

.10. Minimizing total T- density 

The sequence of doses in Fig. 8 minimized the cumulative pop-

lation size of T − over the time horizon. All three patient types re-

eive bang-bang treatment, delaying administration of abiraterone

or as long as possible. All the doses were back loaded to the end

f the time horizon. By not treating the T + and T P populations

ith abiraterone for as long as possible, those populations were

ble to suppress the growth of the T − population, thus minimizing

he objective value. In all cases, only giving no abiraterone at all

esulted in a lower cumulative density of T −. 

ime to competitive release and comparing objective functions 

We create a quantitative measure of the time to competitive re-

ease of T − as the time at which T − becomes the majority of the

umor composition as described below. Frequency of T − at time

 ∈ [0, t f ] is calculated as 

p(t) = 

y T − (t) ∑ 

i ∈T 
y i (t) 

he frequency of the T + and T P together at time t can be calculated

s 

 (t) = 

y T + (t) + y T P (t) ∑ 

i ∈T 
y i ( t) 

he time of competitive release t CR is defined as the first moment

f time t when 

p(t) > q (t) , 

.e. 

 CR 
def = min { t ∈ [0 , T ] : p(t) > q (t) } . 

able 3 shows this time of competitive release for each treatment

chedule in our case studies. 

For the best responder patient the density of T − cells is very

ow for all cases, which accounts for the absence of competitive

elease during the time horizon. Attempting to cure the patient by

iving standard of care or optimizing the treatment schedule to

inimize total tumor density results in the largest density of T −

ells and the earliest time to competitive release for the responder

nd non-responder patients. The minimization of the T − popula-

ion results in the latest time to competitive release and lowest

otal density of T − of any treatment schedules (excluding giving

o treatment at all). 

In Tables S1, S2, and S3 we quantitatively compare the objec-

ive function values of all ten treatment schedules for the “Best Re-

ponder”, “Responder”, and “Non-responder” patients, respectively. 
obustness to jitter of bang-bang treatment schedules 

Seven of the nine optimal control treatment schedules were

ang-bang. This means that at all decision points, either the min-

mum or maximum amount of abiraterone was applied. For these

ases, we performed a full analysis of all possible combinations of

ang-bang control. This allows confirmation that the optimization

lgorithm was finding the true minimum of all possible bang-bang

reatment schedules and to study the robustness to jitter (shift-

ng the administration of treatment to adjacent control points) of

he optimized bang-bang control. This is clinically relevant, as it

ddresses the robustness of an optimal control therapy. How ex-

ct does the optimal control algorithm need to be to reap the

enefits of a dynamic controller? If small deviations in treatment

chedule result in large changes in patient outcome, it may prove

ifficult to successfully implement these schedules. On the other

and, if small deviations in treatment schedule do not drastically

ffect long term patient outcomes, then clinical application may be

chievable without compromising patient health. 

The bang-bang control of minimizing the cumulative total tu-

or volume is quite robust to jitter of the treatment schedule for

ll three patient types. The bang-bang control of minimizing tu-

or variance for the best responder patient is also quite robust.

s the optimized treatment schedules for the responder and non-

esponder patient were not approaching a bang-bang control, they

re not included in this analysis. The bang-bang control of mini-

izing the cumulative T − population for the best responder pa-

ient is also robust. This is due to the fact that there is very little

 

− population in these tumors and changing the treatment sched-

le does not affect the value of this objective within the time of

he simulation. Of most interest is the fact that bang-bang control

f minimizing the cumulative T − population in the responder and

on-responder patient is not robust to jitter. Giving the first dose

n the back-loaded treatment schedule just one subinterval earlier

n the simulation time significantly increases the total T − density.

his shows the importance of delaying the administration of abi-

aterone for as long as possible if the objective is to minimize the

esistant T − population. 

A full expansion of the robustness of bang-bang treatment

chedules can be seen in section S4. 

. Discussion 

Using an evolutionary game theoretic model of metastatic cas-

rate resistant prostate cancer we studied the effects on the under-

ying tumor composition from standard of care, metronomic, and

ewly proposed optimized treatment schedules of the drug abi-

aterone acetate. Under the assumption that metastatic disease can

ot be completely eliminated, instead we studied the success of

hese therapies in terms of management of the disease with the

ltimate goal to delay or completely prevent the competitive re-



76 J.J. Cunningham et al. / Journal of Theoretical Biology 459 (2018) 67–78 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

e

 

m  

(  

b  

e  

t  

r  

d  

v  

m  

1  

m  

w  

B  

m  

b  

c  

c  

2

 

c  

p  

m  

u  

m  

v  

t  

t  

t  

d  

a  

t

 

t  

i  

t  

u

7

 

p  

f  

e  

t  

g  

o  

m  

s  

U  

t  

f  

t  

w

A

 

2  

g  

t  

t  
lease of the T − cells while maintaining an acceptably low tumor

burden. 

High dose density standard of care, high dose density metro-

nomics, and front-loaded dosing schedules such as metronomic

therapies with induction periods all empirically and in our model

provide a dramatic initial response in minimizing tumor burden.

Our model shows that this dramatic initial response is caused by

the elimination of abiraterone sensitive cancer cells ( T P ). These ef-

fects, in all cases, are inevitably short lived as the elimination of

the sensitive cancer cells allows unconstrained growth of the re-

sistant T − cells. Our model also shows that induction periods used

in metronomic schedules cause this competitive release explaining

why clinical trials in metronomic therapies are only non-inferior,

not superior, to full dose standard of care treatment ( Bouche et al.,

2014; Mehta et al., 2009; Montagna et al., 2014 ). These types of

treatments fail to result in a cure and are ill-designed to manage

cancer as a chronic disease, as the time that abiraterone is effective

is short lived. 

In contrast, the optimized schedule for minimizing tumor vari-

ance and the low dose metronomic schedules successfully delay

the competitive release of resistant T − populations. By reducing

dose density, the models show that the sensitive populations are

eliminated at a slower pace, not resulting in a dramatic decrease in

tumor burden but instead resulting in a longer-term tumor main-

tenance. These reduced dose density schedules can greatly increase

the time that abiraterone is effective and better manage cancer as

a chronic disease. 

The null case of never administering abiraterone is the only

schedule that completely prevents the competitive release of the

resistant T − population. As this is obviously not an acceptable

treatment option, our results show that the closest we can get to

completely preventing competitive release is to back-load any abi-

raterone doses as late as possible in the treatment time. Interest-

ingly, requiring the administration of 20% maximum tolerable dose

proved to be a high enough dose density to cause competitive re-

lease late in treatment. Though by delaying, the patient directly

gains progression free survival and lengthens the time that abi-

raterone is effective. 

Combining the lessons learned from these three treatment

schedule types, the overarching conclusion is two fold: 1) delay

giving any treatment for as long as possible, and 2) when treat-

ment is required, give the smallest dose possible. In a true clinical

scenario, the timing and dose of abiraterone will need to be deter-

mined on an individual patient basis. Each patient will have their

unique tolerable level of tumor burden that will most likely be de-

fined using a combination of blood marker indicators and qual-

ity of life measures. Only when the patient is approaching their

personal limit of tumor burden should any abiraterone be given.

The abiraterone dose given at this time should be the minimum

dose required to provide the patient acceptable measures of blood

markers and quality of life. 

To successfully implement this type of low dose density delayed

therapy correctly for each individual patient, proper measurements

of the underlying tumor composition and quality of life will be

required. While there are many quality of life measures available

( Resnick and Penson, 2012 ), the measure of underlying tumor com-

position proves much more difficult. The importance of measuring

the underlying tumor composition is becoming apparent in other

hormonal cancers such as breast cancer ( Yi et al., 2014 ), yet equiv-

alent measures in mCRPC are difficult as biopsies of disseminated

bone disease in mCRPC patients is both expensive and painful. The

new technology of androgen receptor immunohistochemistry “liq-

uid biopsy” from routine blood draws or the development of a high

affinity androgen receptor ligand for imaging like that of PSMA PET

could potentially provide the required information, though these
R  
echniques are currently far from clinically feasible ( Krishnamurthy

t al., 2017; Maurer et al., 2016; Meo et al., 2017; Yee et al., 2016 ). 

Certainly, future refinements of the base mathematical

odel and optimization techniques will improve predictions

 Sta ̌nková et al., 2018 ). For example, the true nature of the sym-

iosis between the T + and T P cells should be experimentally

stablished using representative cell lines providing support for

he parameterization of the competition coefficients and growth

ates. Additionally, future analysis of PSA dynamics and patient

ata of disease progression in the ongoing clinical trial will pro-

ide quantitative parameter refinement that will greatly improve

odel predictions ( Gause, 1934; Gregorio et al., 2016; Hardin,

960; Orlando et al., 2013; Zhang et al., 2017 ). Analytical opti-

ization techniques such as dynamic programming combined

ith generalized characteristics of the underlying Hamilton-Jacobi-

ellman equation could provide another way to solve the current

odel ( Bellman, 1957; Melikyan, 1994; 1998 ). If this proves to

e unfeasible, advanced heuristic methods, such as evolutionary

omputation, neural networks, and genetic and memetic studies,

ould be adopted in the optimal control scheme ( Liang et al.,

006; Lobato et al., 2016; Tan et al., 2002; Tse et al., 2007 ). 

Of most interest, if more sophisticated real-time patient spe-

ific measurements of mCRPC tumors become available, is to im-

lement real-time model predictive control methods where the

odel and the corresponding optimal treatment schedule can be

pdated with each measure of the patient state during the treat-

ent ( Algoul et al., 2011; Moradi et al., 2013; Muros et al., 2017 ). A

ery important aspect of the real-time predictive model would be

he ability to categorize each patient as quickly as possible in order

o provide an optimal therapy prediction as early as possible. For-

unately, the results shown here predict the optimal treatment to

elay competitive release of resistant subpopulations is invariably

 low dose delayed therapy for all patient types. If this holds true,

he time to optimize for each patient would be minimal. 

While these extensions can provide more specific predictions,

he results shown here provide a foundation of treatment schedul-

ng options for management of cancer as a long term disease and

he basic principles of the consequences of these treatment sched-

les on the underlying tumor dynamics. 

. Conclusion 

With an increase in understanding of cancer as an evolutionary

rocess, it is not unreasonable to propose a paradigm shift away

rom curing patients and towards a long term management strat-

gy. In mCRPC, and potentially other cancers where resistance to

herapy is the known cause of treatment failure, our study sug-

ests that only when a patient is approaching their personal limit

f tumor burden should treatment be initiated, and then only the

inimum dose required to provide the patient acceptable mea-

ures of blood markers and quality of life should be administered.

nderstandably, advances in mathematical modeling, experimental

echniques, and patient monitoring technology will be required to

acilitate the psychological leap required for patients to implement

his type of treatment schedules and potentially comfortably live

ith cancer as a long term manageable disease. 
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