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ABSTRACT

The theoretical predictability limit of El Niño-Southern Oscillation has been

shown to be on the order of years, but long-lead predictions of El Niño (EN)

and La Niña (LN) are still lacking. State-of-the-art forecasting schemes tra-

ditionally do not predict beyond the spring barrier. Recent efforts have been

dedicated to the improvement of dynamical models, while statistical schemes

still need to take full advantage of the availability of ocean subsurface vari-

ables, provided regularly for the last few decades as a result of the Tropical

Ocean Global Atmosphere Program (TOGA). Here we use a number of pre-

dictor variables, including temperature at different depths and regions of the

equatorial ocean, in a flexible statistical dynamic components model to make

skilful long-lead retrospective predictions (hindcasts) of the Niño3.4 Index

in the period 1970-2016. The model hindcasts the major EN episodes up to

two-and-a-half years in advance, including the recent extreme 2015/16 EN.

The analysis demonstrates that events are predicted more accurately after the

completion of the observational array in the tropical Pacific in 1994, as a re-

sult of the improved data quality and coverage achieved by TOGA. Therefore,

there is potential to issue long-lead predictions of this climatic phenomenon

at a low computational cost.
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1. Introduction36

Skilful long-range forecasts of El Niño-Southern Oscillation (ENSO) are still in high demand.37

After decades of extensive efforts, dynamical models nowadays represent the best available38

tools to issue ENSO forecasts at lead times of up to two seasons, although they are still largely39

constrained by the lack of complete understanding of the physics of the phenomenon, by problems40

arising from the initialization of the components of the climate system or by the need for accurate41

parametrization of important physical processes (Barnston et al. 2012). Statistical models, on the42

other hand, largely depend on the availability of ocean and atmosphere historical data, so that the43

longer the length of the data, the more robust is the predictor-predictand relationship identified44

by the model (Barnston et al. 2012). In addition to these factors, the low signal-to-noise ratio45

in boreal spring (Sarachik and Cane 2010), the influence of high-frequency atmospheric winds46

(Fedorov et al. 2003, 2015), as well as the natural irregularity of the climate system (Wittenberg47

2009) all limit the long-term dynamical and statistical forecasting of the phenomenon. Some of48

the classical ENSO theories view the oscillation as self-sustained (Cane et al. 1990; Jin et al.49

1994; Jin 1997), and support the claim that it is potentially predictable several years in advance50

(Cane et al. 1986; Goswami and Shukla 1991; Latif et al. 1999; Chen and Cane 2008; Wittenberg51

et al. 2014; Gonzalez and Goddard 2016; Luo et al. 2016; DiNezio et al. 2017; Astudillo et al.52

2017), but only a handful of studies document such long-lead retrospective forecasts of past events53

(Latif et al. 1999; Chen et al. 2004; Luo et al. 2008; Izumo et al. 2010; Ludescher et al. 2013,54

2014; Petrova et al. 2017; Gonzalez and Goddard 2016; Ramesh et al. 2016; Luo et al. 2017), and55

most of them use dynamical models. Statistical models are assumed to be less skilful at long lead56

times, and comparable in performance to dynamical schemes at shorter lead times of about half57
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a year (Barnston 1994; Chen and Cane 2008). To some extent this is explained by the fact that a58

new generation of statistical models has not been added to the ENSO forecasting plume, while59

the majority of the old models have not been substantially revised in the recent years, and some60

since they were created in the 1980s and early 1990s (Barnston et al. 2012).61

One of the strongest events on record - the 1982/83 EN - surprised the scientific community62

(Cane et al. 1986; McPhaden and Yu 1999) as it was neither predicted, nor identified until very63

late in its development. This triggered a decade-long effort to put in place a monitoring system in64

the tropical Pacific with the aim of studying ENSO better and improving the predictive capacity of65

models (McPhaden and Yu 1999), which led to the inauguration of the TOGA research program66

in 1985 (McPhaden and Yu 1999). It deployed a three-dimensional array in the tropical Pacific67

that since then regularly samples the subsurface temperature down to 500 metres depth. The68

number of monthly temperature profiles increased dramatically (Figure S1). The system was69

completed in 1994, just in time to track the stronger-than-normal trade winds in 1995/96, which70

generated a buildup of warm waters in the western tropical Pacific more than one year before the71

peak of the record-breaking 1997/98 EN (McPhaden and Yu 1999). This was the first time when72

the scientific community and the public could see the benefits of TOGA. A number of studies now73

fully recognize the fundamental role that the intensification of the trade winds and the subsurface74

heat buildup in the western equatorial Pacific play in the onset of EN events (Wyrtki 1985; Cane75

et al. 1986; Jin 1997; Clarke and Van Gorder 2003; McPhaden 2003, 2004; McPhaden et al. 2006;76

Ramesh and Murtugudde 2013; Ballester et al. 2015; Petrova et al. 2017), and statistical models77

can benefit from available data to represent in more detail these processes that occur early on in78

the generation of the events.79

In the present study we use an improved version of the flexible statistical dynamic components80

ENSO model described in Petrova et al. (2017). At long lead times it incorporates predictor81
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variables designed to capture the three-dimensional shape of the warm pool subsurface heat82

buildup at different depths, as well as zonal wind stress anomalies in the central and western83

equatorial Pacific (see Methods). The aim is to capture the low-frequency deterministic and84

state-dependent portions of the variability and coupling between the ocean and atmosphere85

(Eisenman et al. 2005; Gebbie and Tziperman 2009; Hu and Fedorov 2016; Levine and Jin 2017),86

from which predictability can be derived (Latif et al. 1999; Chen et al. 2015). The model consists87

of several stochastic cycle components with frequencies corresponding to the main peaks in the88

spectrum of the Niño3.4 Index (see Petrova et al. (2017)), as well as predictor regression variables89

such as sea surface and subsurface temperature and zonal wind stress. These variables enter the90

model equations in the form of lagged time series with respect to the monthly value of the Niño3.491

index, and are selected to be consistent with the EN dynamical evolution. In this way, different92

covariates are used for predictions at different lead times, depending on the average temporal93

progression of EN events. In the present study we show hindcasts from the model, and as is94

normally the case, a somewhat poorer performance is expected in operational mode. In fact, the95

model has been operational since 2015, and while it correctly detected the 2015 EN and the mild96

La Niña (LN) in 2016, it failed to foresee the recent LN in 2017 and predicted neutral conditions97

instead (not shown). This paper is organized as follows: in Section 2 we describe the data and98

methods used in the analysis; in Section 3 we present the results and discuss them in Section 4,99

where we also provide concluding remarks.100

101

2. Data and Methods102
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The model used in this study is an advanced version of the statistical dynamic components103

model proposed by Petrova et al. (2017) and developed specifically for prediction of the average104

sea surface temperature in the Niño3.4 region defined as the box [5◦N–5◦S, 170◦W–120◦W].105

It is a statistical model that belongs to the class of dynamic components time series models.106

The distinctive feature of this type of models is that they decompose the time series of interest107

into dynamic components that represent linear stochastic processes with separate evolutions108

(Durbin and Koopman 2012). The addition of predictor variables, in this case derived from109

lead-lag climate composites, is done using regression. We refer to the Appendix for complete and110

mathematically precise details.111

The model first presented in Petrova et al. (2017) is built in terms of two main subgroups of112

elements. The first subgroup contains the so-called dynamic components, which include a trend113

(level), a seasonal, and three time-varying cyclical (quasi-periodic) components. The second114

subgroup contains a number of individually selected predictor variables, which enter the model115

equation in the form of regressed and lagged time series and will be described later. All of these116

separate components are added together in a linear fashion to form the final ENSO model given by:117
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118

yt︸︷︷︸
Niño3.4 index

= µt︸︷︷︸
trend

+ γt︸︷︷︸
seasonality

+ ψ1t +ψ2t +ψ3t︸ ︷︷ ︸
quasiperiodic cycles

+ Xtβ︸︷︷︸
predictors

+ εt︸︷︷︸
noise

119

where yt represents the average monthly temperature in the Niño3.4 region at time t, µt is the120

trend component, γt is the seasonal component with 12 seasonal effects (one fixed value for every121

month of the year), and ψ1t , ψ2t and ψ3t are the stochastic cycle components. Xtβ is a vector that122

contains the predictor variables, while εt is the noise term in the model.123

Here we improve this first version of the model, by replacing the previously fixed seasonal124

component with two slowly-varying annual and semi-annual periodic components, and also by125

including one additional time-varying cycle component, so that the new model equation becomes:126

127

yt︸︷︷︸
Niño3.4 index

= µt︸︷︷︸
trend

+ψ1t +ψ2t︸ ︷︷ ︸
seasonality

+ψ3t +ψ4t +ψ5t +ψ6t︸ ︷︷ ︸
quasiperiodic cycles

+ Xtβ︸︷︷︸
predictors

+ εt︸︷︷︸
noise

128

Thorough information about the different components and how they are modelled and estimated129

is provided in the Appendix.130

The previous model presented in Petrova et al. (2017) used three quasi-periodic cycle131

components that generally correspond to the near-annual (NA), quasi-biannual (QB) and quasi-132

quadrennial (QQ) modes of ENSO variability, while here we added one more stochastic cycle133
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component associated with ENSO variability on decadal (D) time scales. In Petrova et al. (2017)134

we established that this low-frequency variability is important for the simulation of some EN135

events, and this feature was not explicitly resolved in the previous model version. We have also136

replaced the fixed seasonal component in the previous version of the model with two new cyclical137

components bound to annual (∼ 12 months) and semi-annual (∼ 6 months) periodicities. They138

are allowed to vary slowly over time in order to address the finding in our previous study that139

the annual frequency of the seasonal component was not sufficiently well-simulated, because140

the annual periodicity of the Niño3.4 temperature is not strictly fixed at 12 months (Chen et al.141

2016), and especially because during EN events the amplitude of the annual cycle is suppressed142

(Guilyardi 2006). As a result, we have a total of 6 stochastic cycle components in the new model143

version.144

There are also different regression predictors included in the model at different lead times,145

all selected based on the general evolution of an average EN event. LN is assumed to be146

symmetrical, although we are aware that important asymmetries exist between the two and this147

problem will be addressed in future work. In the ocean we used both surface and subsurface148

temperatures at different depths (between 0 and 500 metres) and regions for the extraction of149

the predictors. Regions are selected in the western and central equatorial Pacific where the150

ocean is typically warmed abnormally prior to EN and a heat buildup occurs during the growing151

and recharge phase (Ballester et al. 2016a; Petrova et al. 2017). Figures S2 and S3, as well as152

Table 1 show the selected regions and depths considered at different lead times. The selection153

is based on climate composites of EN events from the period 1978-2012 (also see Petrova et al.154

(2017)). The sea surface temperature data sets used for the predictors and for the Niño3.4155

temperature time series are the NOAA-ERSST-V3 before 1982 and the NOAA-OISST-V2156

thereafter (www.esrl.noaa.gov/psd/). The subsurface temperature data set used for the subsurface157
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ocean predictors is the Subsurface Temperature and Salinity Analyses by Ishii et al. (2005)158

archived at (https://rda.ucar.edu/datasets/) before 2012 and the Hadley Centre EN4.0.2 analyses159

data thereafter (Good et al. 2013). In the atmosphere three different regions are used to extract160

zonal wind stress predictors for the model. The three regions are again located in the western161

and central equatorial Pacific (see Figure S4 and Table 1) and the data set is the NCEP/NCAR162

Reanalysis (Kalnay et al. 1996).163

During forecasting, the dynamic components (especially the stationary cycles) have larger164

weights for the mid- and short-term forecasts, while the impact of the predictors remains the same165

for short- and long-term forecasts. Hence, the predictors become relatively more important for166

long-term forecasting (also see the Appendix for more information). Importantly, the predictor167

variables also affect the estimation of the cycle components parameters for each forecast.168

Parameter estimation relies on the Kalman filter methods (Kalman 1960; Harvey 1989) and on169

state space methods (Durbin and Koopman 2012).170

Results in Figure 3 are obtained as follows: the Niño3.4 predictions in the period 1972–1993171

are based on parameter estimates (calibration process) from data in the period 1952–1970, while172

the predictions in the period 1994–2015 are based on parameter estimates from data in the period173

1974–1992. In this way, to avoid the heavy computations, we have produced the predictions174

in Figure 3 using a pre-fixed period for calibration purposes. In comparison, the predictions175

(including parameter estimation) presented in Figures 1, 2 and 4 are based on the observations176

available before each starting prediction point. Still, data for the prediction estimations was177

progressively excluded, in order to include only the more recent samples and discard earlier data178

of assumingly lesser quality. Thus, predictions up to 1990 were made using the data from 1952179

onwards, predictions between 1991-1996 were made using the data from 1970 onwards, while180

predictions thereafter were made using the data from 1982 onwards.181
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A limitation of the study is that the performed predictions are not operational, as they are182

based on retrospective hindcasting experiments. Our system also strongly relies on the model183

variability skeleton, contributed, among others, by different cyclical components. However, all184

ENSO forecasting systems, including operational dynamical models, implicitly or explicitly185

rely on intrinsic ENSO variability generated at the cyclical low-frequency modes for prediction186

(Kirtman and Schopf 1998). As an example, we include the spectrum of Niño3.4 from a long187

(500 years) spin-up simulation with the GFDL CM2.1, which is one of the operational models for188

ENSO prediction, in order to compare it with the spectrum of both the Niño3.4 observations and189

their predictions with the model proposed here (Figure S5). What can be clearly noticed is that190

the power density is distributed similarly in all cases, with main peaks corresponding to the NA,191

QB, QQ and D modes of variability, respectively, also used as cyclical time-varying components192

in our model.193

194

3. Results195

The observed and hindcast monthly Niño3.4 anomalies at 6 and 24 months lead time are196

presented in Figure 1. The 6-month lead hindcast predicts the timing and magnitude of all EN and197

LN events, and no false alarms are generated (RMSE = 0.54; Figure 1a). Since an ENSO event198

is typically already under-way half a year before its peak in December-January-February (DJF),199

the majority of the operational forecasting schemes are able to produce accurate predictions at200

this lead time (Barnston et al. 2012). The 24-month lead hindcast, and in general any lead time201

hindcast beyond the spring barrier (i.e. from 8 months onward; not shown), generally reproduces202

the crests and troughs in the time series (RMSE = 0.62; Figure 1b). However, for the period203
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before the prominent 1997/98 EN, we find that the predicted amplitudes of the larger events are204

notably smaller than the observed and sometimes an event is hardly or not detected. We highlight205

that this cannot be explained by a change in the interannual ENSO activity in the different time206

periods, as three sizeable EN (1972/73, 1982/83, 1986/87 and 1997/98, 2009/10, 2015/16) and207

LN (1973/74, 1975/76, 1987/88 and 1998/00, 2007/08, 2010/11) episodes have occurred before208

and after 1994 (CPC 2016). In addition, it cannot be simply attributed to the design of the model209

and the predictor variables used, because EN events from both periods were considered for the210

composites on which the selection of predictor variables was based (see Petrova et al. (2017) for211

details).212

To characterize better the difference between periods, Figure 2 displays the regressions between213

the observations and hindcasts for two consecutive 22-year sub-periods (1972-1993 in blue and214

1994-2015 in red) at 6- and 24-month lead. No substantial difference is observed between the215

slopes of the regression lines for the two periods at the shorter lead time (regr1972−1993 = 0.65,216

t = 23.88, regr1994−2015 = 0.74, t = 27.34, p < 0.001; Figure 2a), indicating that the model217

performance is comparable. Conversely, the regression coefficients significantly increase for the218

long-range hindcasts made after 1994 (regr1972−1993 = 0.35, t = 17.12, regr1994−2015 = 0.65,219

t = 30.93, p < 0.001; Figure 2b), which represents a major improvement in the capacity of220

the model. The change in the overall similarity between the observations and the hindcasts at221

24-month lead time is also assessed by the sixteen-year moving root mean square error (RMSE)222

shown in Figure 1c. The RMSE decreases monotonically with time until the early 1990s and then223

stays relatively constant afterwards. At the same time, data availability was constantly improving224

during TOGA, until the tropical Pacific network array of moorings was fully into place at the end225

of the program in 1994 (McPhaden et al. 1998).226

To further explore the difference in the model performance over the two periods, Figure 3 shows227
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correlations and root mean square errors for the whole range of lead times up to 24 months. For228

lead times of about 2 seasons both the correlations and RMSE are similar among periods, while229

for lead times beyond 6 months they start to diverge. We also observe that correlations and RMSE230

stay relatively constant beyond this lead time. One possible reason for this stable behaviour is231

that the stochastic quasi-periodic cycles are the main contributors to the skill of the predictions232

and their unknown parameters are estimated similarly by the Kalman filter at different lead233

times beyond 2 seasons. Generally, the skill is derived from information about subsurface heat234

anomalies of approximately the same intensity, and the different cycles capture similar oscillation235

phases. Previous studies (Chen et al. 1995, 2004; Chen and Cane 2008; Stockdale et al. 2011;236

Duan et al. 2016; Lee et al. 2018) have already concluded that the spring predictability barrier237

may not be an intrinsic barrier to the system itself, but it could rather depend on model skill,238

observational data availability, especially in the subsurface western tropical Pacific (Lee et al.239

2018), and precursors used. Warm water volume (WWV) in the tropical Pacific as a predictor240

(i.e. subsurface information) is not associated with a spring persistence barrier, and its correlation241

with the Niño3.4 is above 0.7 for the February-April season when SST anomalies have the lowest242

correlation (McPhaden 2003). Here we add evidence to such claims, as we also find that the drop243

in forecast skill is slow and gradual for longer-lead predictions than a couple of seasons (Figure244

3).245

The statistical model we use is linear, and while its stochastic cyclical components are mainly246

responsible for capturing the correct phase of the oscillation, the lagged predictor variables are247

expected to contribute to the correct forecasts of the amplitudes of the events, especially at longer248

lead times (see Methods, the Appendix and Petrova et al. (2017) for details). Below we analyse249

if the predictor variables add significantly to the EN hindcasts of the earlier period, which also250

coincides with a time when no regular subsurface temperature and wind stress data were being251
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provided yet (McPhaden et al. 1998).252

The hindcasts at several lead times of the strongest EN events in the study period (see CPC253

(2016)) are displayed in Figure 4. In all cases the model is capable of detecting a warming 29254

months in advance (magenta curve), although there are evident errors in the amplitude and timing255

in some cases. A much better representation of the amplitudes in the long-lead hindcasts of the256

events in the second period (1997/98, 2009/10 and 2015/16), as compared to those occurring in257

the first period (1972/73, 1982/83 and 1986/87), is also clearly visible in the figure. The estimated258

coefficients and the corresponding t- and p-values for the predictor variables used in the 24-month259

lead predictions of all the warm events in the study period are listed in Table 2. Remarkably, none260

of the three predictor variables is found to be significant at the 90% level for the hindcasts of any261

of the events before 1994, while there is at least one significant variable for each hindcast of the262

episodes that occurred afterwards. Similar results hold for the other long-lead predictions shown263

in Figure 4 (Tables S1 and S2).264

265

4. Discussion and Conclusions266

We demonstrated that the Tropical Pacific Observing System, and especially the provision267

of subsurface temperature data on a regular basis, has a vital contributing role (Newman et al.268

2011) for the long-lead predictive capabilities of the model proposed here. With the end of269

TOGA in 1994 nearly the whole equatorial band between 10◦N-10◦S was covered with moorings270

(McPhaden et al. 1998), and this is also the start of altimetry data (Stockdale et al. 2011). As271

can be seen from the Tropical Atmosphere Ocean-Triangle Trans-Ocean Buoy Network (TAO-272

TRITON) array development (NOAA 2018a), some subsurface data from the central Pacific was273
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already streamed at the end of 1987, while at the end of 1991 data was also coming in from the274

western Pacific, which represents a key region for the forecast of the phenomenon at lead times275

beyond the spring barrier. Thus, almost three decades have passed since the three-dimensional276

observations began in the tropical Pacific, and the limited span of the data is now less of a problem277

for the robust definition of statistical predictive schemes (Barnston et al. 2012).278

As seen in the previous section, there is a well-defined shift between the lack of significance of279

the predictor variables for the hindcasts of the warm events before the end of TOGA and their280

significance thereafter. Our results strongly support the view that the improved hindcasts are due281

to the availability of regular and higher resolution subsurface data ensured by the implementation282

of the observational network array (NOAA 2018b). This is also confirmed by Figure S6, which283

shows the same hindcasts as in Figure 4, but made without the inclusion of the predictor variables284

in the model framework. The lack of predictors in the model results into a clear deterioration of285

the hindcasts of the EN events from the period after 1994, but in no substantial difference in the286

hindcasts of the events from the earlier period (also see Table S3).287

The correct and relevant subsurface information also has implications for the forecasting of288

the magnitudes of the warm events (Ballester et al. 2016b, 2017). In the linear framework of the289

model that we use, at the longer lead times the predictor variables have more forecast weight than290

they do at the shorter lead times (see Methods and the Appendix). The predicted amplitudes of291

the three earlier events shown in Figure 4a-c do not exceed 1.5◦C at the long lead times of 21292

and 29 months (green and magenta curves). At the same time, the predicted amplitudes of the293

three events that took place in the later period, when the predictor variables are shown to have294

an impact (Table 2), are consistent with the occurrence of a strong EN event (green and magenta295

curves in Figure 4d-f). Some of the underestimation of the amplitudes of the events predicted at296

long lead times is also due to the stochastic noise component of the zonal wind (Penland 1996;297
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Hu and Fedorov 2016; Levine and McPhaden 2016) as more extreme EN events have been found298

to result from more intense and frequent westerly wind bursts (Chen et al. 2015). Additionally, in299

the case of the 1982/83 EN anomalous solar radiation and suppressed convection may have played300

a more decisive role, setting this event apart from the others (Kim and An 2018) and making the301

predictors used here at long lead times less relevant (Kirtman and Zebiak 1997).302

In essence, the same conclusion as the one reached here has been made by Stockdale et al.303

(2011), where a large reduction of the errors in Niño3.4 SST forecasts made after 1994 is304

detected with the European Centre for Medium-Range Weather Forecasts (ECMWF) Seasonal305

Forecast System 3. The results are also in agreement with an earlier study with the same system306

(Balmaseda and Anderson 2009), in which the effect of ARGO floats are removed from the307

observations, and it is established that improvements in the forecast are clearly explained by the308

improved observing system. Further, it was found that the information from the mooring array309

is the main contributor for the increased skill of the prediction system in the equatorial Pacific310

region. In addition, McPhaden et al. (2006) using an empirical ENSO model with two predictors -311

WWV in the equatorial Pacific and an index of the Madden-Jullian Oscillation - documents much312

better estimations of the Niño3.4 after 1995, with lower than observed amplitudes before this313

year, just as it is in the results presented here. Similarly, the authors attribute the improvement to314

the better observations after the placement of the TAO array.315

Conversely, a more recent study (Kumar et al. 2015) concluded that the increase of the number316

of observations after 1994 did not result in a clear improvement of the prediction skill of the317

National Center for Environmental Prediction (NCEP) System 2. We note, however, that our318

results are not directly comparable, because the forecasts discussed therein are performed at up to319

6 months lead time, when essentially an SST anomaly signature of a developing EN or LN event320

is already present in the eastern equatorial Pacific, and subsurface information is generally not321
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as crucial as it is at the longer lead times discussed here. The authors themselves admit that the322

evolution of the ocean-atmosphere system at this short lead is affected much more by the surface323

wind and ocean circulation feedbacks. SST is in fact found to be a more useful predictor for324

forecasts started 6 months before the event than WWV (McPhaden 2003).325

Some of the existing statistical systems already include measures of integrated equatorial heat326

content (Barnston et al. 2012). However, our model uses temperature data from a selection of327

dynamically relevant regions and depths to maximize its predictive power. These values may328

not always be well-represented by spatially-integrated measures of heat content, and our analysis329

suggests that the integration sometimes masks the intensity of the heat buildup in specific regions330

in the subsurface at long lead times, and more importantly, does not allow the systems to properly331

track the eastward propagation of heat along the equatorial thermocline (Ballester et al. 2015;332

Petrova et al. 2017). WWV anomalies along the whole equatorial Pacific present in late boreal333

winter and spring (February-May) are persistent until next boreal winter, but those in early334

boreal winter are not. Hence, as a predictor it could extend the lead time to about a year in335

advance, but not more (Izumo et al. 2018). Alternatively, WWV calculated only in the western336

equatorial Pacific is significantly correlated with Niño3 SST anomalies for much longer lead337

times of more than 20 months (McPhaden 2003), and is a significantly better predictor beyond338

the spring barrier (Izumo et al. 2018). Sea surface height (SSH), on the other hand, is also not339

always representative of the heat accumulation in the warm pool, because sometimes positive and340

negative heat anomalies exist at different depths of the water column near the thermocline, and341

the net result is a lack of a prominent SSH anomaly (see Figures S7 and S8). The combination342

of the memory effect represented by subsurface information, weakly-varying seasonality and343

nonlinearity, on the other hand, could be sufficient for reproducing the overall ENSO variability344

(Chen et al. 2016), and our model design attempts to incorporate these particular effects.345
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Although there is a marked difference in the predictive capacity of the model during the earlier346

and later sub-periods, it still exhibits high skill (i.e. correlations and RMSE in Figure 3) in both347

periods. We conclude that statistical models should be improved in the direction of using the348

available subsurface information that is fundamental for ENSO in a more discrete and targeted349

way, so that they can provide early and useful information about EN and LN events to decision350

makers around the world, which could prevent threats to human lives and reduce economic costs.351
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APPENDIX361

Model Description362

The most basic version of the class of dynamic components time series models is the local level363

model for a univariate time series yt and is given by yt = µt + εt where µt is a linear stochastic364

process, dynamically evolving over time, and εt is a noise term. We can consider µt to follow365

a random walk process that captures the long-term trend features in the time series and εt to be366

an independent and identically distributed (IID) variable that represents the short-term deflections367

from the trend or the noise in the time series. The trend signal µt is the key feature of interest in368

the local level model, also for generating long- or medium-term forecasts of yt . Its random walk369

process is given by µt+1 = µt +ηt where the noise term ηt is IID. Under the assumption that both370

noise terms εt and ηt are normally distributed with mean zero and variances σ2
ε and σ2

η , respec-371

tively, the celebrated Kalman filter equations (Kalman 1960) compute the minimum mean squared372

error (MMSE) estimates of µt given realizations for y1,y2, . . . ,yt , in a recursive real-time fashion,373

for t = 1,2, . . . ,T where T is the length of the time series under investigation. The estimate of374

µt can be expressed as the weighted average ∑
T
j=0 w jyt− j where the weights are normalised (they375

sum up to unity, w0 +w1 +w2 + . . . = 1), are exponentially decaying and are a function of the376

signal-to-noise ratio q = σ2
η /σ2

ε . When q is relatively large (σ2
ε is small relative to σ2

η , imply-377

ing that yt behaves close to a random walk process as yt ≈ µt), the weights are decaying fast to378

zero and we obtain a ”noisy” estimate of µt . This estimate may be representative as it is close379

to the local level (small estimation bias), but given that only a few observations are used for the380

estimation, the precision is typically small (i.e. large estimation variance). When q is relatively381

small (σ2
η is small relative to σ2

ε , implying that µt is evolving slowly over time as µt+1 ≈ µt), the382
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weights are decaying slowly to zero and we obtain a smooth estimate of µt . In the latter case, the383

estimation bias may be larger (less local targeting), but the estimation variance is smaller since384

more observations are used for estimation. The appropriate value for the signal-to-noise ratio q385

for a particular time series depends on the dynamic features of the time series. We estimate q by386

the method of maximum likelihood, which entails the numerical maximization of the likelihood387

function that is computed using the Kalman filter (for a specific value of q). The h-step ahead fore-388

casting (that is the estimation of yT+h, given realizations for y1,y2, . . . ,yT ) is also computed by the389

forward-moving Kalman filter (from 1 to T ). The estimation methodology provides the MMSE390

optimal weights for forecasting: the forecasting weights gradually decline when observations are391

increasingly remote from the forecast point as these become increasingly less relevant. The esti-392

mation of all µt’s given the realizations y1,y2, . . . ,yT (all data) is referred to as signal extraction393

and relies on Kalman smoothing which is a backward-moving filter (from T to 1); see Durbin394

and Koopman (2012, Chapter 2) with all methods for filtering, forecasting, signal extraction and395

parameter estimation, and with related details for the local level model.396

The local level model is a special case of the dynamic components model adopted in Petrova397

et al. (2017) where the observation equation yt = µt + εt is extended with regression effects398

(predictors) and more linear stochastic processes that represent key dynamic features of the399

Niño3.4 temperature time series including seasonal and cyclical effects. The model then becomes400

yt = µt +Xtβ +∑
M
i=1 ψit + εt where Xt is the exogenous 1×K vector of covariates (or predictor401

variables) measured at time t, β is the K× 1 vector of predictor coefficients, ψit is the ith dy-402

namic cycle component which is modelled as a stationary process for i = 1, . . . ,M, where M is403

the number of cycles in the model (in our case M = 6). The model specification for the cycle404

component is given by ψi,t+1 = ρi cos(λi)ψit +ρi sin(λi)ψit +ωit with the auxiliary dynamic pro-405

cess given by ψ
†
i,t+1 = ρi cos(λi)ψ

†
it −ρi sin(λi)ψ

†
it +ω

†
it where ρi is the autoregressive coefficient406
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(determines the persistence of the cycle process), λi is the frequency of the cycle measured in407

radians, and ωit and ω
†
it are two IID noise terms which are independent of each other, and all408

other noise terms, but they have the same (common) variance σ2
ω, i, for i = 1, . . . ,M. It can be409

shown that we can formulate ψit as a stationary autoregressive moving average (ARMA) process.410

As long as the coefficient pairs (ρi,λi) are sufficiently different for different i = 1, . . . ,M, the M411

cycle components ψ1,t , . . . ,ψM,t can be uniquely extracted from the observed time series yt . The412

parameter constraints for each cycle process are 0 < ρi < 1 (stationarity), 0 < λi < 2π (circularity)413

and σ2
ω, i > 0, for i = 1, . . . ,M. The signal-to-noise coefficient for the ith cycle process is given414

by qψ, i = σ2
ω, i /σ2

ε , for i = 1, . . . ,M. The complete model for yt (in our case for the Niño3.4415

temperature time series) can be represented as a linear Gaussian state space model such that the416

Kalman filter methods can be used in a similar way as for the local level model. The dynamic417

level and cycle (including the auxiliary cycle variables) components are placed in the state vector,418

denoted by αt , which is subject to a multivariate dynamic stochastic process. The predictor coeffi-419

cients in vector β are treated as time-invariant, fixed parameters. Both αt and β are simultaneously420

estimated as part of the Kalman filter (see Harvey (1989) and Durbin and Koopman (2012, Part I)421

for its general treatment). Also in this more general context of the state space model, the Kalman422

filter methods remain to provide the MMSE optimal weights to the observations for signal extrac-423

tion and forecasting.424

The statistical dynamic components model can be viewed as a linear time series model with425

time-varying parameters. The introduction of time-varying parameters as done with stochastically426

evolving level and cycle components can address and approximate non-linear features in the time427

series via piece-wise linearization. The number of nodes for the linearization (or the smooth-428

ness of the piece-wise approximation) is implicitly determined via the signal-to-noise parameters429
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of the time-varying components. We therefore may claim that the introduction of the dynamic430

components also make the analysis more robust to non-linear features in the time series.431
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Predictor variable Region I Region II Region III
Zonal Wind Stress (180e−220e)x(4s−4n) (180e−210e)x(10s−0) (160e−200e)x(0−10n)

Sea Surface Temperature (140e−160e)x(5s−5n) (140e−180e)x(10s−5n) (120e−170e)x(10s−5n)
Subsurface Temperature (120e−140e)x(10s−7n) (150e−200e)x(10s−7n) (140e−210e)x(5n−10n)

TABLE 1: Regions over which wind stress and temperature variables are averaged to calculate
predictors used in the ENSO model.
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El Niño event 250m. RI 300m. RI 400m. RI
1972/73

Coefficient 0.12 −0.17 −0.29
t 0.78 −0.82 −0.86
p 0.43 0.41 0.39

1982/83
Coefficient 0.09 0.01 0.20

t 0.78 0.03 0.90
p 0.43 0.97 0.36

1986/87
Coefficient −0.03 −0.12 −0.02

t −0.30 −0.88 −0.09
p 0.76 0.37 0.92

1991/92
Coefficient 0.07 −0.09 0.09

t 0.64 −0.56 0.38
p 0.52 0.57 0.70

1997/98
Coefficient 0.24 0.35 0.46

t 1.61 1.52 1.46
p 0.10 0.12 0.14

2002/03
Coefficient 0.21 0.31 0.38

t 1.67 1.57 1.44
p 0.09 0.11 0.15

2006/07
Coefficient 0.23 0.32 0.43

t 2.07 1.80 1.75
p 0.04 0.07 0.08

2009/10
Coefficient 0.17 0.24 0.46

t 1.68 1.46 1.95
p 0.09 0.14 0.05

2014/15
Coefficient 0.15 0.25 0.34

t 1.61 1.63 1.59
p 0.10 0.10 0.11

2015/16
Coefficient 0.14 0.28 0.32

t 1.55 1.85 1.56
p 0.12 0.06 0.12

TABLE 2: Coefficients, t-values and p-values for subsurface temperature predictor regression
variables at 24-month lead. Values significant at the 90% level are bold.
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and the red dots correspond to the period 1994-2015 with a linear regression line in beige.598

The red arrow indicates the improvement in the slope of the regression line for the period599

1994-2015 with respect to the slope of the regression line for the period 1972-1993. . . . . 37600
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iñ
o3
.4

an
om

al
y
(◦
C
)

R
M
S
E

6 months

24 months

24 months

post TOGA

a

b

c

FIG. 1. Retrospective prediction of the Niño3.4 Index. Monthly observations (black curve) and model

prediction at a, 6-month lead (red curve) and b, 24-month lead (blue curve). c, 16-year moving root mean

square error (RMSE) of the prediction in (b) (blue curve) before and after (shading) the completion of the

Observing System in 1994.

608

609

610

611

36



−3 −2 −1 0 1 2 3

−2

−1

0

1

2

3

 

 

1972−1993
1994−2015

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

3

N
iñ
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FIG. 4. Forecasts of the major El Niño events since 1970. a-c, El Niño events in the period 1972-1993 and

d-f, 1994-2015. The thick black curves are the observed Niño3.4 Index anomalies, and the thin magenta, green,

beige and cyan curves are predictions started 29, 21, 13 and 5 months in advance.
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Figure S1: Number of temperature profiles in the equatorial Pacific Ocean (including XBT, TAO

and Argo profiles). Adapted from Kumar et al. (2015).
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Figure S2: Composites of interannual monthly subsurface temperature anomalies (in [◦C], shading)

between 50-500 metres depth from the Subsurface Temperature and Salinity Analyses by Ishii et

al. (2005) at lead times of 19, 21, 24 and 28 months ahead of the EN peak. Red boxes indicate

regions for derivation of predictors. Composites are with respect to all El Niño events in the period

1978-2012.
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Figure S3: As in Figure S2, but at lead times of 7, 9, 12 and 16 months ahead of the El Niño

peak. Red and green boxes indicate regions for derivation of predictors.
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Figure S4: Composites of interannual monthly surface zonal and meridional wind stress anomalies

(in [Nm−2], arrows) and wind stress curl (in [Nm−3], shading) from the NCEP/NCAR reanalysis

(Kalnay et al. (1996)) for a) 25, b) 11, and c) 7 months before the winter peak of El Niño. Red

boxes indicate regions for derivation of predictors. Composites are with respect to all El Niño events

in the period 1978-2012.
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Figure S5: Multi Taper Method (MTM) power spectra for a) the observed Niño3.4 time series

(black), and for predictions with the dynamic components model at 6 months lead time (red) and

24 months lead time (blue); b) the simulated Niño3.4 time series (black) with GFDL2.1 ENSO

dynamical model (500-year spin-up simulation). The solid lines indicate the power density, dotted

lines harmonic peaks and dashed lines confidence levels based on a red noise null hypothesis. The red

markers indicate the regions of the spectrum associated with the near-annual (NA), quasi-biannual

(QB), quasi-quadrennial (QQ) and decadal (D) modes of ENSO variability.
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Figure S6: Forecasts of the major El Niño events since 1970. a-c, El Niño events in the
period 1972-1993 and d-f, 1994-2015. The solid black curves are the observed Niño3.4 Index
anomalies, the solid (dashed) magenta, green, beige and cyan curves are predictions started
29, 21, 13 and 5 months in advance running the model with the predictor variables (without
the predictor variables).
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Figure S7: Composite anomalies of (left) sea surface height (in [cm], shading) and zonal wind

stress (in [Nm−2], arrows); (right) subsurface potential temperature (in [◦C], shading) and zonal

and vertical currents (in [m/s], arrows) between latitudes 2◦S-2◦N of the ORAS Version 3 reanalysis

product at lags 23-26 with respect to the 1982/83 El Niño event. Red boxes contain opposite-sign

temperature anomalies in the western equatorial Pacific.
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Figure S8: Composite anomalies of (left) sea surface height (in [cm], shading) and zonal wind

stress (in [Nm−2], arrows); (right) subsurface potential temperature (in [◦C], shading) and zonal

and vertical currents (in [m/s], arrows) between latitudes 2◦S-2◦N of the ORAS Version 3 reanalysis

product at lags 23-26 with respect to the 1997/98 El Niño event. Red boxes contain opposite-sign

temperature anomalies in the western equatorial Pacific.



Table S1: Coefficients, t-values and p-values for subsurface temperature predictor re-
gression variables at 21-month lead. Values significant at the 90% level are bold.

El Niño event 250m. RII wnd RI
1972/73

Coefficient −0.08 −0.70
t −0.62 −0.26
p 0.53 0.79

1982/83
Coefficient −0.07 −0.88

t −0.70 −0.40
p 0.48 0.68

1986/87
Coefficient −0.05 −0.32

t −0.50 −0.16
p 0.61 0.87

1991/92
Coefficient −0.14 0.48

t −1.27 0.23
p 0.20 0.81

1997/98
Coefficient -0.33 3.96

t -1.96 1.34
p 0.05 0.18

2002/03
Coefficient -0.34 4.67

t -2.08 1.83
p 0.03 0.06

2006/07
Coefficient −0.24 4.41

t −1.60 1.92
p 0.11 0.05

2009/10
Coefficient -0.30 4.07

t -2.10 2.02
p 0.03 0.04

2014/15
Coefficient -0.20 4.05

t -1.67 2.53
p 0.09 0.01

2015/16
Coefficient −0.14 3.59

t −1.19 2.25
p 0.23 0.02



Table S2: Coefficients, t-values and p-values for subsurface temperature predictor re-
gression variables at 29-month lead. Coefficients significant at the 90% level are bold.

El Niño event 250m. RI 300m. RI 400m. RI
1972/73

Coefficient 0.06 0.04 −0.51
t 0.38 0.18 −1.25
p 0.70 0.85 0.21

1982/83
Coefficient −0.07 −0.01 0.07

t −0.55 −0.07 0.30
p 0.58 0.94 0.76

1986/87
Coefficient 0.04 0.07 0.18

t 0.37 0.50 0.81
p 0.71 0.61 0.41

1991/92
Coefficient −0.04 0.13 0.22

t −0.36 0.72 0.91
p 0.71 0.47 0.36

1997/98
Coefficient 0.25 0.37 0.57

t 1.73 1.68 1.88
p 0.08 0.09 0.06

2002/03
Coefficient 0.15 0.28 0.50

t 1.15 1.35 1.78
p 0.25 0.17 0.07

2006/07
Coefficient 0.18 0.38 0.40

t 1.60 2.09 1.64
p 0.11 0.03 0.10

2009/10
Coefficient 0.18 0.29 0.32

t 1.68 1.71 1.38
p 0.09 0.08 0.16

2014/15
Coefficient 0.16 0.29 0.41

t 1.64 1.87 1.89
p 0.10 0.06 0.06

2015/16
Coefficient 0.11 0.25 0.38

t 1.23 1.60 1.79
p 0.22 0.11 0.07



Table S3: Predicted values for the peak of El Niño events shown in Figure 4 from the model
with and without predictor variables. Indicated are also the observed values for the peaks.

El Niño event/Lag 5 months 13 months 21 months 29 months
1972/73

no predictors 1.37 0.91 0.82 0.92
predictors 1.18 1.15 0.89 0.85

observation 1.91 1.91 1.91 1.91
1982/83

no predictors 0.89 0.55 0.33 0.39
predictors 1.05 0.43 0.79 0.91

observation 2.36 2.36 2.36 2.36
1986/87

no predictors 0.66 0.70 0.98 0.93
predictors 0.93 0.85 1.42 1.32

observation 1.11 1.11 1.11 1.11
1997/98

no predictors 1.31 −0.03 0.92 0.48
predictors 2.42 2.24 2.32 2.20

observation 2.59 2.59 2.59 2.59
2009/10

no predictors 0.73 0.88 0.99 0.37
predictors 1.32 1.20 0.89 0.58

observation 1.35 1.35 1.35 1.35
2015/16

no predictors 1.48 1.44 1.08 1.38
predictors 2.50 2.20 1.59 1.50

observation 2.51 2.51 2.51 2.51


