Journal article Open Access

A primer to frequent itemset mining for bioinformatics

Naulaerts, Stefan; Meysman, Pieter; Bittremieux, Wout; Vu, Trung Nghia; Vanden Berghe, Wim; Goethals, Bart; Laukens, Kris


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <controlfield tag="005">20200120171532.0</controlfield>
  <controlfield tag="001">3551515</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium</subfield>
    <subfield code="a">Meysman, Pieter</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium</subfield>
    <subfield code="a">Bittremieux, Wout</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium</subfield>
    <subfield code="a">Vu, Trung Nghia</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium</subfield>
    <subfield code="a">Vanden Berghe, Wim</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium</subfield>
    <subfield code="a">Goethals, Bart</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium</subfield>
    <subfield code="a">Laukens, Kris</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">766986</subfield>
    <subfield code="z">md5:f30eb1e5bcd78fb1facd0f86b23aa474</subfield>
    <subfield code="u">https://zenodo.org/record/3551515/files/Naulaerts2013.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2013-10-26</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:3551515</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">216–231</subfield>
    <subfield code="n">2</subfield>
    <subfield code="p">Briefings in Bioinformatics</subfield>
    <subfield code="v">16</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium</subfield>
    <subfield code="a">Naulaerts, Stefan</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">A primer to frequent itemset mining for bioinformatics</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Over the past two decades, pattern mining techniques have become an integral part of many bioinformatics solutions. Frequent itemset mining is a popular group of pattern mining techniques designed to identify elements that frequently co-occur. An archetypical example is the identification of products that often end up together in the same shopping basket in supermarket transactions. A number of algorithms have been developed to address variations of this computationally non-trivial problem. Frequent itemset mining techniques are able to efficiently capture the characteristics of (complex) data and succinctly summarize it. Owing to these and other interesting properties, these techniques have proven their value in biological data analysis. Nevertheless, information about the bioinformatics applications of these techniques remains scattered. In this primer, we introduce frequent itemset mining and their derived association rules for life scientists. We give an overview of various algorithms, and illustrate how they can be used in several real-life bioinformatics application domains. We end with a discussion of the future potential and open challenges for frequent itemset mining in the life sciences.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1093/bib/bbt074</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
55
61
views
downloads
Views 55
Downloads 61
Data volume 46.8 MB
Unique views 53
Unique downloads 59

Share

Cite as