Journal article Open Access

Grasping frequent subgraph mining for bioinformatics applications

Mrzic, Aida; Meysman, Pieter; Bittremieux, Wout; Moris, Pieter; Cule, Boris; Goethals, Bart; Laukens, Kris


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/3551511</identifier>
  <creators>
    <creator>
      <creatorName>Mrzic, Aida</creatorName>
      <givenName>Aida</givenName>
      <familyName>Mrzic</familyName>
      <affiliation>Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium</affiliation>
    </creator>
    <creator>
      <creatorName>Meysman, Pieter</creatorName>
      <givenName>Pieter</givenName>
      <familyName>Meysman</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-5903-633X</nameIdentifier>
      <affiliation>Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium</affiliation>
    </creator>
    <creator>
      <creatorName>Bittremieux, Wout</creatorName>
      <givenName>Wout</givenName>
      <familyName>Bittremieux</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-3105-1359</nameIdentifier>
      <affiliation>Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium</affiliation>
    </creator>
    <creator>
      <creatorName>Moris, Pieter</creatorName>
      <givenName>Pieter</givenName>
      <familyName>Moris</familyName>
      <affiliation>Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium</affiliation>
    </creator>
    <creator>
      <creatorName>Cule, Boris</creatorName>
      <givenName>Boris</givenName>
      <familyName>Cule</familyName>
      <affiliation>Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium</affiliation>
    </creator>
    <creator>
      <creatorName>Goethals, Bart</creatorName>
      <givenName>Bart</givenName>
      <familyName>Goethals</familyName>
      <affiliation>Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium</affiliation>
    </creator>
    <creator>
      <creatorName>Laukens, Kris</creatorName>
      <givenName>Kris</givenName>
      <familyName>Laukens</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-8217-2564</nameIdentifier>
      <affiliation>Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Grasping frequent subgraph mining for bioinformatics applications</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2018</publicationYear>
  <dates>
    <date dateType="Issued">2018-09-03</date>
  </dates>
  <resourceType resourceTypeGeneral="JournalArticle"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/3551511</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.1186/s13040-018-0181-9</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Searching for interesting common subgraphs in graph data is a well-studied problem in data mining. Subgraph mining techniques focus on the discovery of patterns in graphs that exhibit a specific network structure that is deemed interesting within these data sets. The definition of which subgraphs are interesting and which are not is highly dependent on the application. These techniques have seen numerous applications and are able to tackle a range of biological research questions, spanning from the detection of common substructures in sets of biomolecular compounds, to the discovery of network motifs in large-scale molecular interaction networks. Thus far, information about the bioinformatics application of subgraph mining remains scattered over heterogeneous literature. In this review, we provide an introduction to subgraph mining for life scientists. We give an overview of various subgraph mining algorithms from a bioinformatics perspective and present several of their potential biomedical applications.&lt;/p&gt;</description>
  </descriptions>
</resource>
80
44
views
downloads
Views 80
Downloads 44
Data volume 99.5 MB
Unique views 79
Unique downloads 43

Share

Cite as